News

group leader: Prof. Pietschmann

Recent Submissions

  • A novel circulating tamiami mammarenavirus shows potential for zoonotic spillover.

    Moreno, Hector; Rastrojo, Alberto; Pryce, Rhys; Fedeli, Chiara; Zimmer, Gert; Bowden, Thomas A; Gerold, Gisa; Kunz, Stefan; TWINCORE, Zentrum für experimentelle und klinische Infektionsforschung GmbH,Feodor-Lynen Str. 7, 30625 Hannover, Germany. (PLOS, 2020-12-28)
    A detailed understanding of the mechanisms underlying the capacity of a virus to break the species barrier is crucial for pathogen surveillance and control. New World (NW) mammarenaviruses constitute a diverse group of rodent-borne pathogens that includes several causative agents of severe viral hemorrhagic fever in humans. The ability of the NW mammarenaviral attachment glycoprotein (GP) to utilize human transferrin receptor 1 (hTfR1) as a primary entry receptor plays a key role in dictating zoonotic potential. The recent isolation of Tacaribe and lymphocytic choriominingitis mammarenaviruses from host-seeking ticks provided evidence for the presence of mammarenaviruses in arthropods, which are established vectors for numerous other viral pathogens. Here, using next generation sequencing to search for other mammarenaviruses in ticks, we identified a novel replication-competent strain of the NW mammarenavirus Tamiami (TAMV-FL), which we found capable of utilizing hTfR1 to enter mammalian cells. During isolation through serial passaging in mammalian immunocompetent cells, the quasispecies of TAMV-FL acquired and enriched mutations leading to the amino acid changes N151K and D156N, within GP. Cell entry studies revealed that both substitutions, N151K and D156N, increased dependence of the virus on hTfR1 and binding to heparan sulfate proteoglycans. Moreover, we show that the substituted residues likely map to the sterically constrained trimeric axis of GP, and facilitate viral fusion at a lower pH, resulting in viral egress from later endosomal compartments. In summary, we identify and characterize a naturally occurring TAMV strain (TAMV-FL) within ticks that is able to utilize hTfR1. The TAMV-FL significantly diverged from previous TAMV isolates, demonstrating that TAMV quasispecies exhibit striking genetic plasticity that may facilitate zoonotic spillover and rapid adaptation to new hosts.
  • Heparan Sulfate Is a Cellular Receptor for Enteric Human Adenoviruses.

    Rajan, Anandi; Palm, Elin; Trulsson, Fredrik; Mundigl, Sarah; Becker, Miriam; Persson, B David; Frängsmyr, Lars; Lenman, Annasara; TWINCORE, Zentrum für experimentelle und klinische Infektionsforschung GmbH,Feodor-Lynen Str. 7, 30625 Hannover, Germany. (MDPI, 2021-02-14)
    Human adenovirus (HAdV)-F40 and -F41 are leading causes of diarrhea and diarrhea-associated mortality in children under the age of five, but the mechanisms by which they infect host cells are poorly understood. HAdVs initiate infection through interactions between the knob domain of the fiber capsid protein and host cell receptors. Unlike most other HAdVs, HAdV-F40 and -F41 possess two different fiber proteins-a long fiber and a short fiber. Whereas the long fiber binds to the Coxsackievirus and adenovirus receptor (CAR), no binding partners have been identified for the short fiber. In this study, we identified heparan sulfate (HS) as an interaction partner for the short fiber of enteric HAdVs. We demonstrate that exposure to acidic pH, which mimics the environment of the stomach, inactivates the interaction of enteric adenovirus with CAR. However, the short fiber:HS interaction is resistant to and even enhanced by acidic pH, which allows attachment to host cells. Our results suggest a switch in receptor usage of enteric HAdVs after exposure to acidic pH and add to the understanding of the function of the short fibers. These results may also be useful for antiviral drug development and the utilization of enteric HAdVs for clinical applications such as vaccine development.
  • Antiviral Actions of 25-Hydroxycholesterol in Fish Vary With the Virus-Host Combination.

    Adamek, Mikolaj; Davies, Jonathan; Beck, Alexander; Jordan, Lisa; Becker, Anna M; Mojzesz, Miriam; Rakus, Krzysztof; Rumiac, Typhaine; Collet, Bertrand; Brogden, Graham; et al. (Frontiers, 2021-02-24)
    Cholesterol is essential for building and maintaining cell membranes and is critical for several steps in the replication cycle of viruses, especially for enveloped viruses. In mammalian cells virus infections lead to the accumulation of the oxysterol 25-hydroxycholesterol (25HC), an antiviral factor, which is produced from cholesterol by the cholesterol 25 hydroxylase (CH25H). Antiviral responses based on CH25H are not well studied in fish. Therefore, in the present study putative genes encoding for CH25H were identified and amplified in common carp and rainbow trout cells and an HPLC-MS method was applied for determination of oxysterol concentrations in these cells under virus infection. Our results give some evidence that the activation of CH25H could be a part of the antiviral response against a broad spectrum of viruses infecting fish, in both common carp and rainbow trout cells in vitro. Quantification of oxysterols showed that fibroblastic cells are capable of producing 25HC and its metabolite 7α,25diHC. The oxysterol 25HC showed an antiviral activity by blocking the entry of cyprinid herpesvirus 3 (CyHV-3) into KFC cells, but not spring viremia of carp virus (SVCV) or common carp paramyxovirus (Para) in the same cells, or viral haemorrhagic septicaemia virus (VHSV) and infectious pancreatic necrosis virus (IPNV) into RTG-2 cells. Despite the fact that the CH25H based antiviral response coincides with type I IFN responses, the stimulation of salmonid cells with recombinant type I IFN proteins from rainbow trout could not induce ch25h_b gene expression. This provided further evidence, that the CH25H-response is not type I IFN dependent. Interestingly, the susceptibility of CyHV-3 to 25HC is counteracted by a downregulation of the expression of the ch25h_b gene in carp fibroblasts during CyHV-3 infection. This shows a unique interplay between oxysterol based immune responses and immunomodulatory abilities of certain viruses.
  • The structure of enteric human adenovirus 41-A leading cause of diarrhea in children.

    Rafie, K; Lenman, A; Fuchs, J; Rajan, A; Arnberg, N; Carlson, L-A; TWINCORE, Zentrum für experimentelle und klinische Infektionsforschung GmbH,Feodor-Lynen Str. 7, 30625 Hannover, Germany. (American Association for the Advancement of Science, 2021-01-08)
    Human adenovirus (HAdV) types F40 and F41 are a prominent cause of diarrhea and diarrhea-associated mortality in young children worldwide. These enteric HAdVs differ notably in tissue tropism and pathogenicity from respiratory and ocular adenoviruses, but the structural basis for this divergence has been unknown. Here, we present the first structure of an enteric HAdV-HAdV-F41-determined by cryo-electron microscopy to a resolution of 3.8 Å. The structure reveals extensive alterations to the virion exterior as compared to nonenteric HAdVs, including a unique arrangement of capsid protein IX. The structure also provides new insights into conserved aspects of HAdV architecture such as a proposed location of core protein V, which links the viral DNA to the capsid, and assembly-induced conformational changes in the penton base protein. Our findings provide the structural basis for adaptation of enteric HAdVs to a fundamentally different tissue tropism.
  • In Vitro Evaluation of a Phage Cocktail Controlling Infections with Escherichia coli.

    Korf, Imke H E; Kittler, Sophie; Bierbrodt, Anna; Mengden, Ruth; Rohde, Christine; Rohde, Manfred; Kroj, Andrea; Lehnherr, Tatiana; Fruth, Angelika; Flieger, Antje; et al. (MDPI, 2020-12-19)
    Worldwide, poultry industry suffers from infections caused by avian pathogenic Escherichia coli. Therapeutic failure due to resistant bacteria is of increasing concern and poses a threat to human and animal health. This causes a high demand to find alternatives to fight bacterial infections in animal farming. Bacteriophages are being especially considered for the control of multi-drug resistant bacteria due to their high specificity and lack of serious side effects. Therefore, the study aimed on characterizing phages and composing a phage cocktail suitable for the prevention of infections with E. coli. Six phages were isolated or selected from our collections and characterized individually and in combination with regard to host range, stability, reproduction, and efficacy in vitro. The cocktail consisting of six phages was able to inhibit formation of biofilms by some E. coli strains but not by all. Phage-resistant variants arose when bacterial cells were challenged with a single phage but not when challenged by a combination of four or six phages. Resistant variants arising showed changes in carbon metabolism and/or motility. Genomic comparison of wild type and phage-resistant mutant E28.G28R3 revealed a deletion of several genes putatively involved in phage adsorption and infection.
  • Cohort Profile: The LoewenKIDS Study - life-course perspective on infections, the microbiome and the development of the immune system in early childhood.

    Gottschick, Cornelia; Raupach-Rosin, Heike; Langer, Susan; Hassan, Lamiaa; Horn, Johannes; Dorendorf, Evelyn; Caputo, Mahrrouz; Bittner, Martina; Beier, Lea; Rübsamen, Nicole; et al. (Oxford Academic, 2019-02-27)
    [Noabstract available]
  • Hepatitis C reference viruses highlight potent antibody responses and diverse viral functional interactions with neutralising antibodies.

    Bankwitz, Dorothea; Bahai, Akash; Labuhn, Maurice; Doepke, Mandy; Ginkel, Corinne; Khera, Tanvi; Todt, Daniel; Ströh, Luisa J; Dold, Leona; Klein, Florian; et al. (BMJ Publisher. Group, 2020-12-15)
    Community-acquired pneumonia by primary or superinfections with Streptococcus pneumoniae can lead to acute respiratory distress requiring mechanical ventilation. The pore-forming toxin pneumolysin alters the alveolar-capillary barrier and causes extravasation of protein-rich fluid into the interstitial pulmonary tissue, which impairs gas exchange. Platelets usually prevent endothelial leakage in inflamed pulmonary tissue by sealing inflammation-induced endothelial gaps. We not only confirm that S pneumoniae induces CD62P expression in platelets, but we also show that, in the presence of pneumolysin, CD62P expression is not associated with platelet activation. Pneumolysin induces pores in the platelet membrane, which allow anti-CD62P antibodies to stain the intracellular CD62P without platelet activation. Pneumolysin treatment also results in calcium efflux, increase in light transmission by platelet lysis (not aggregation), loss of platelet thrombus formation in the flow chamber, and loss of pore-sealing capacity of platelets in the Boyden chamber. Specific anti-pneumolysin monoclonal and polyclonal antibodies inhibit these effects of pneumolysin on platelets as do polyvalent human immunoglobulins. In a post hoc analysis of the prospective randomized phase 2 CIGMA trial, we show that administration of a polyvalent immunoglobulin preparation was associated with a nominally higher platelet count and nominally improved survival in patients with severe S pneumoniae-related community-acquired pneumonia. Although, due to the low number of patients, no definitive conclusion can be made, our findings provide a rationale for investigation of pharmacologic immunoglobulin preparations to target pneumolysin by polyvalent immunoglobulin preparations in severe community-acquired pneumococcal pneumonia, to counteract the risk of these patients becoming ventilation dependent. This trial was registered at www.clinicaltrials.gov as #NCT01420744.
  • Cross-order host switches of hepatitis C-related viruses illustrated by a novel hepacivirus from sloths.

    Moreira-Soto, Andres; Arroyo-Murillo, Francisco; Sander, Anna-Lena; Rasche, Andrea; Corman, Victor; Tegtmeyer, Birthe; Steinmann, Eike; Corrales-Aguilar, Eugenia; Wieseke, Nicolas; Avey-Arroyo, Judy; et al. (Oxford University Press, 2020-04-25)
    The genealogy of the hepatitis C virus (HCV) and the genus Hepacivirus remains elusive despite numerous recently discovered animal hepaciviruses (HVs). Viruses from evolutionarily ancient mammals might elucidate the HV macro-evolutionary patterns. Here, we investigated sixty-seven two-toed and nine three-toed sloths from Costa Rica for HVs using molecular and serological tools. A novel sloth HV was detected by reverse transcription polymerase chain reaction (RT-PCR) in three-toed sloths (2/9, 22.2%; 95% confidence interval (CI), 5.3-55.7). Genomic characterization revealed typical HV features including overall polyprotein gene structure, a type 4 internal ribosomal entry site in the viral 5'-genome terminus, an A-U-rich region and X-tail structure in the viral 3'-genome terminus. Different from other animal HVs, HV seropositivity in two-toed sloths was low at 4.5 per cent (3/67; CI, 1.0-12.9), whereas the RT-PCR-positive three-toed sloths were seronegative. Limited cross-reactivity of the serological assay implied exposure of seropositive two-toed sloths to HVs of unknown origin and recent infections in RT-PCR-positive animals preceding seroconversion. Recent infections were consistent with only 9 nucleotide exchanges between the two sloth HVs, located predominantly within the E1/E2 encoding regions. Translated sequence distances of NS3 and NS5 proteins and host comparisons suggested that the sloth HV represents a novel HV species. Event- and sequence distance-based reconciliations of phylogenies of HVs and of their hosts revealed complex macro-evolutionary patterns, including both long-term evolutionary associations and host switches, most strikingly from rodents into sloths. Ancestral state reconstructions corroborated rodents as predominant sources of HV host switches during the genealogy of extant HVs. Sequence distance comparisons, partial conservation of critical amino acid residues associated with HV entry and selection pressure signatures of host genes encoding entry and antiviral protein orthologs were consistent with HV host switches between genetically divergent mammals, including the projected host switch from rodents into sloths. Structural comparison of HCV and sloth HV E2 proteins suggested conserved modes of hepaciviral entry. Our data corroborate complex macro-evolutionary patterns shaping the genus Hepacivirus, highlight that host switches are possible across highly diverse host taxa, and elucidate a prominent role of rodent hosts during the Hepacivirus genealogy.
  • Liver-expressed Cd302 and Cr1l limit hepatitis C virus cross-species transmission to mice

    American Association for the Advancement of Science (AAAS), 2020-11-04
    Hepatitis C virus (HCV) has no animal reservoir, infecting only humans. To investigate species barrier determinants limiting infection of rodents, murine liver complementary DNA library screening was performed, identifying transmembrane proteins Cd302 and Cr1l as potent restrictors of HCV propagation. Combined ectopic expression in human hepatoma cells impeded HCV uptake and cooperatively mediated transcriptional dysregulation of a noncanonical program of immunity genes. Murine hepatocyte expression of both factors was constitutive and not interferon inducible, while differences in liver expression and the ability to restrict HCV were observed between the murine orthologs and their human counterparts. Genetic ablation of endogenous Cd302 expression in human HCV entry factor transgenic mice increased hepatocyte permissiveness for an adapted HCV strain and dysregulated expression of metabolic process and host defense genes. These findings highlight human-mouse differences in liver-intrinsic antiviral immunity and facilitate the development of next-generation murine models for preclinical testing of HCV vaccine candidates. Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
  • The envelope protein of tick-borne encephalitis virus influences neuron entry, pathogenicity, and vaccine protection.

    Lindqvist, Richard; Rosendal, Ebba; Weber, Elvira; Asghar, Naveed; Schreier, Sarah; Lenman, Annasara; Johansson, Magnus; Dobler, Gerhard; Bestehorn, Malena; Kröger, Andrea; et al. (BMC, 2020-09-28)
    Background: Tick-borne encephalitis virus (TBEV) is considered to be the medically most important arthropod-borne virus in Europe. The symptoms of an infection range from subclinical to mild flu-like disease to lethal encephalitis. The exact determinants of disease severity are not known; however, the virulence of the strain as well as the immune status of the host are thought to be important factors for the outcome of the infection. Here we investigated virulence determinants in TBEV infection. Method: Mice were infected with different TBEV strains, and high virulent and low virulent TBEV strains were chosen. Sequence alignment identified differences that were cloned to generate chimera virus. The infection rate of the parental and chimeric virus were evaluated in primary mouse neurons, astrocytes, mouse embryonic fibroblasts, and in vivo. Neutralizing capacity of serum from individuals vaccinated with the FSME-IMMUN® and Encepur® or combined were evaluated. Results: We identified a highly pathogenic and neurovirulent TBEV strain, 93/783. Using sequence analysis, we identified the envelope (E) protein of 93/783 as a potential virulence determinant and cloned it into the less pathogenic TBEV strain Torö. We found that the chimeric virus specifically infected primary neurons more efficiently compared to wild-type (WT) Torö and this correlated with enhanced pathogenicity and higher levels of viral RNA in vivo. The E protein is also the major target of neutralizing antibodies; thus, genetic variation in the E protein could influence the efficiency of the two available vaccines, FSME-IMMUN® and Encepur®. As TBEV vaccine breakthroughs have occurred in Europe, we chose to compare neutralizing capacity from individuals vaccinated with the two different vaccines or a combination of them. Our data suggest that the different vaccines do not perform equally well against the two Swedish strains. Conclusions: Our findings show that two amino acid substitutions of the E protein found in 93/783, A83T, and A463S enhanced Torö infection of neurons as well as pathogenesis and viral replication in vivo; furthermore, we found that genetic divergence from the vaccine strain resulted in lower neutralizing antibody titers in vaccinated individuals.
  • OCIAD1 is a host mitochondrial substrate of the hepatitis C virus NS3-4A protease

    Tran, Huong T. L.; et al.; TWINCORE, Zentrum für experimentelle und klinische Infektionsforschung GmbH,Feodor-Lynen Str. 7, 30625 Hannover, Germany. (PLOS, 2020-07-01)
    The hepatitis C virus (HCV) nonstructural protein 3-4A (NS3-4A) protease is a key component of the viral replication complex and the target of protease inhibitors used in current clinical practice. By cleaving and thereby inactivating selected host factors it also plays a role in the persistence and pathogenesis of hepatitis C. Here, we describe ovarian cancer immunoreactive antigen domain containing protein 1 (OCIAD1) as a novel cellular substrate of the HCV NS3-4A protease. OCIAD1 was identified by quantitative proteomics involving stable isotopic labeling using amino acids in cell culture coupled with mass spectrometry. It is a poorly characterized membrane protein believed to be involved in cancer development. OCIAD1 is cleaved by the NS3-4A protease at Cys 38, close to a predicted transmembrane segment. Cleavage was observed in heterologous expression systems, the replicon and cell culture-derived HCV systems, as well as in liver biopsies from patients with chronic hepatitis C. NS3-4A proteases from diverse hepacivirus species efficiently cleaved OCIAD1. The subcellular localization of OCIAD1 on mitochondria was not altered by NS3-4A-mediated cleavage. Interestingly, OCIAD2, a homolog of OCIAD1 with a cysteine residue in a similar position and identical subcellular localization, was not cleaved by NS3-4A. Domain swapping experiments revealed that the sequence surrounding the cleavage site as well as the predicted transmembrane segment contribute to substrate selectivity. Overexpression as well as knock down and rescue experiments did not affect the HCV life cycle in vitro, raising the possibility that OCIAD1 may be involved in the pathogenesis of hepatitis C in vivo.
  • Lactoferrin-Hexon Interactions Mediate CAR-Independent Adenovirus Infection of Human Respiratory Cells.

    Persson, B David; Lenman, Annasara; Frängsmyr, Lars; Schmid, Markus; Ahlm, Clas; Plückthun, Andreas; Jenssen, Håvard; Arnberg, Niklas; TWINCORE, Zentrum für experimentelle und klinische Infektionsforschung GmbH,Feodor-Lynen Str. 7, 30625 Hannover, Germany. (ASM, 2020-07-01)
    Virus entry into host cells is a complex process that is largely regulated by access to specific cellular receptors. Human adenoviruses (HAdVs) and many other viruses use cell adhesion molecules such as the coxsackievirus and adenovirus receptor (CAR) for attachment to and entry into target cells. These molecules are rarely expressed on the apical side of polarized epithelial cells, which raises the question of how adenoviruses-and other viruses that engage cell adhesion molecules-enter polarized cells from the apical side to initiate infection. We have previously shown that species C HAdVs utilize lactoferrin-a common innate immune component secreted to respiratory mucosa-for infection via unknown mechanisms. Using a series of biochemical, cellular, and molecular biology approaches, we mapped this effect to the proteolytically cleavable, positively charged, N-terminal 49 residues of human lactoferrin (hLF) known as human lactoferricin (hLfcin). Lactoferricin (Lfcin) binds to the hexon protein on the viral capsid and anchors the virus to an unknown receptor structure of target cells, resulting in infection. These findings suggest that HAdVs use distinct cell entry mechanisms at different stages of infection. To initiate infection, entry is likely to occur at the apical side of polarized epithelial cells, largely by means of hLF and hLfcin bridging HAdV capsids via hexons to as-yet-unknown receptors; when infection is established, progeny virions released from the basolateral side enter neighboring cells by means of hLF/hLfcin and CAR in parallel.IMPORTANCE Many viruses enter target cells using cell adhesion molecules as receptors. Paradoxically, these molecules are abundant on the lateral and basolateral side of intact, polarized, epithelial target cells, but absent on the apical side that must be penetrated by incoming viruses to initiate infection. Our study provides a model whereby viruses use different mechanisms to infect polarized epithelial cells depending on which side of the cell-apical or lateral/basolateral-is attacked. This study may also be useful to understand the biology of other viruses that use cell adhesion molecules as receptors.
  • Mesenchymal to epithelial transition driven by canine distemper virus infection of canine histiocytic sarcoma cells contributes to a reduced cell motility in vitro.

    Armando, Federico; Gambini, Matteo; Corradi, Attilio; Becker, Kathrin; Marek, Katarzyna; Pfankuche, Vanessa Maria; Mergani, Ahmed Elmonastir; Brogden, Graham; de Buhr, Nicole; Von Köckritz-Blickwede, Maren; et al. (Blackwell Publishing, 2020-07-06)
    Sarcomas especially of histiocytic origin often possess a poor prognosis and response to conventional therapies. Interestingly, tumours undergoing mesenchymal to epithelial transition (MET) are often associated with a favourable clinical outcome. This process is characterized by an increased expression of epithelial markers leading to a decreased invasion and metastatic rate. Based on the failure of conventional therapies, viral oncolysis might represent a promising alternative with canine distemper virus (CDV) as a possible candidate. This study hypothesizes that a CDV infection of canine histiocytic sarcoma cells (DH82 cells) triggers the MET process leading to a decreased cellular motility. Immunofluorescence and immunoblotting were used to investigate the expression of epithelial and mesenchymal markers followed by scratch assay and an invasion assay as functional confirmation. Furthermore, microarray data were analysed for genes associated with the MET process, invasion and angiogenesis. CDV-infected cells exhibited an increased expression of epithelial markers such as E-cadherin and cytokeratin 8 compared to controls, indicating a MET process. This was accompanied by a reduced cell motility and invasiveness. Summarized, these results suggest that CDV infection of DH82 cells triggers the MET process by an increased expression of epithelial markers resulting in a decreased cell motility in vitro.
  • The ATGL lipase cooperates with ABHD5 to mobilize lipids for hepatitis C virus assembly.

    Vieyres, Gabrielle; Reichert, Isabelle; Carpentier, Arnaud; Vondran, Florian W R; Pietschmann, Thomas; TWINCORE, Zentrum für experimentelle und klinische Infektionsforschung GmbH,Feodor-Lynen Str. 7, 30625 Hannover, Germany. (PLOS, 2020-06-15)
    Lipid droplets are essential cellular organelles for storage of fatty acids and triglycerides. The hepatitis C virus (HCV) translocates several of its proteins onto their surface and uses them for production of infectious progeny. We recently reported that the lipid droplet-associated α/β hydrolase domain-containing protein 5 (ABHD5/CGI-58) participates in HCV assembly by mobilizing lipid droplet-associated lipids. However, ABHD5 itself has no lipase activity and it remained unclear how ABHD5 mediates lipolysis critical for HCV assembly. Here, we identify adipose triglyceride lipase (ATGL) as ABHD5 effector and new host factor involved in the hepatic lipid droplet degradation as well as in HCV and lipoprotein morphogenesis. Modulation of ATGL protein expression and lipase activity controlled lipid droplet lipolysis and virus production. ABHD4 is a paralog of ABHD5 unable to activate ATGL or support HCV assembly and lipid droplet lipolysis. Grafting ABHD5 residues critical for activation of ATGL onto ABHD4 restored the interaction between lipase and co-lipase and bestowed the pro-viral and lipolytic functions onto the engineered protein. Congruently, mutation of the predicted ABHD5 protein interface to ATGL ablated ABHD5 functions in lipid droplet lipolysis and HCV assembly. Interestingly, minor alleles of ABHD5 and ATGL associated with neutral lipid storage diseases in human, are also impaired in lipid droplet lipolysis and their pro-viral functions. Collectively, these results show that ABHD5 cooperates with ATGL to mobilize triglycerides for HCV infectious virus production. Moreover, viral manipulation of lipid droplet homeostasis via the ABHD5-ATGL axis, akin to natural genetic variation in these proteins, emerges as a possible mechanism by which chronic HCV infection causes liver steatosis.
  • Identification of a Human Respiratory Syncytial Virus Cell Entry Inhibitor by Using a Novel Lentiviral Pseudotype System.

    Haid, Sibylle; Grethe, Christina; Bankwitz, Dorothea; Grunwald, Thomas; Pietschmann, Thomas; TWINCORE, Zentrum für experimentelle und klinische Infektionsforschung GmbH,Feodor-Lynen Str. 7, 30625 Hannover, Germany. (ASM, 2015-12-30)
    Lentiviral budding is governed by group-specific antigens (Gag proteins) and proceeds in the absence of cognate viral envelope proteins, which has been exploited to create pseudotypes incorporating envelope proteins from nonlentiviral families. Here, we report the generation of infectious lentiviral pseudoparticles incorporating human respiratory syncytial virus (hRSV) F protein alone (hRSV-Fpp) or carrying SH, G, and F proteins (hRSV-SH/G/Fpp). These particles recapitulate key infection steps of authentic hRSV particles, including utilization of glycosaminoglycans and low-pH-independent cell entry. Moreover, hRSV pseudoparticles (hRSVpp) can faithfully reproduce phenotypic resistance to a small-molecule fusion inhibitor in clinical development (BMS-433771) and a licensed therapeutic F protein-targeting antibody (palivizumab). Inoculation of several human cell lines from lung and liver revealed more than 30-fold differences in susceptibility to hRSVpp infection, suggesting differential expression of hRSV entry cofactors and/or restriction factors between these cell types. Moreover, we observed cell-type-dependent functional differences between hRSVpp carrying solely F protein or SH, G, and F proteins with regard to utilization of glycosaminoglycans. Using hRSVpp, we identified penta-O-galloyl-β-d-glucose (PGG) as a novel hRSV cell entry inhibitor. Moreover, we show that PGG also inhibits cell entry of hRSVpp carrying F proteins resistant to BMS-433771 or palivizumab. This work sheds new light on the mechanisms of hRSV cell entry, including possible strategies for antiviral intervention. Moreover, hRSVpp should prove valuable to dissect hRSV envelope protein functions, including the interaction with cell entry factors. Importance: Lentiviral pseudotypes are highly useful to specifically dissect the functions of viral and host factors in cell entry, which have been exploited for numerous viruses. Here, we successfully created hRSVpp and show that they faithfully recapitulate key characteristics of parental hRSV cell entry. Importantly, hRSVpp accurately mirror hRSV resistance to small-molecule fusion inhibitors and clinically approved therapeutic antibodies. Moreover, we observed highly different susceptibilities of cell lines to hRSVpp infection and also differences between hRSVpp types (with F protein alone or with SH, G, and F proteins) in regard to cell entry. This indicates differential expression of host factors determining hRSV cell entry between these cell lines and highlights the fact that the hRSVpp system is useful to explore the functional properties of hRSV envelope protein combinations. Therefore, this system will be highly useful to study hRSV cell entry and host factor usage and to explore antiviral strategies targeting hRSV cell entry.
  • Critical challenges and emerging opportunities in hepatitis C virus research in an era of potent antiviral therapy: Considerations for scientists and funding agencies.

    Bartenschlager, Ralf; Baumert, Thomas F; Bukh, Jens; Houghton, Michael; Lemon, Stanley M; Lindenbach, Brett D; Lohmann, Volker; Moradpour, Darius; Pietschmann, Thomas; Rice, Charles M; et al. (Elsevier, 2018-03-02)
    The development and clinical implementation of direct-acting antivirals (DAAs) has revolutionized the treatment of chronic hepatitis C. Infection with any hepatitis C virus (HCV) genotype can now be eliminated in more than 95% of patients with short courses of all-oral, well-tolerated drugs, even in those with advanced liver disease and liver transplant recipients. DAAs have proven so successful that some now consider HCV amenable to eradication, and continued research on the virus of little remaining medical relevance. However, given 400,000 HCV-related deaths annually important challenges remain, including identifying those who are infected, providing access to treatment and reducing its costs. Moreover, HCV infection rarely induces sterilizing immunity, and those who have been cured with DAAs remain at risk for reinfection. Thus, it is very unlikely that global eradication and elimination of the cancer risk associated with HCV infection can be achieved without a vaccine, yet research in that direction receives little attention. Further, over the past two decades HCV research has spearheaded numerous fundamental discoveries in the fields of molecular and cell biology, immunology and microbiology. It will continue to do so, given the unique opportunities afforded by the reagents and knowledge base that have been generated in the development and clinical application of DAAs. Considering these critical challenges and new opportunities, we conclude that funding for HCV research must be sustained.
  • Filovirus antiviral activity of cationic amphiphilic drugs is associated with lipophilicity and ability to induce phospholipidosis.

    Gunesch, Antonia P; Zapatero-Belinchon, Francisco J; Pinkert, Lukas; Steinmann, Eike; Manns, Michael P; Schneider, Gisbert; Pietschmann, Thomas; Brönstrup, Mark; von Hahn, Thomas; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany.; TWINCORE, Zentrum für experimentelle und klinische Infektionsforschung GmbH,Feodor-Lynen Str. 7, 30625 Hannover, Germany. (ASM, 2020-06-08)
    Several cationic amphiphilic drugs (CADs) have been found to inhibit cell entry of filoviruses and other enveloped viruses. Structurally unrelated CADs may have antiviral activity, yet the underlying common mechanism and structure-activity relationship are incompletely understood.We aimed to understand how widespread antiviral activity is among CADs and which structural and physico-chemical properties are linked to entry inhibition.We measured inhibition of Marburg virus pseudoparticle (MARVpp) cell entry by 45 heterogeneous and mostly FDA-approved CADs and cytotoxicity in EA.hy926 cells. We analysed correlation of antiviral activity with four chemical properties: pKa, ClogP, molecular weight and distance between the basic group and hydrophobic ring structures. Additionally, we quantified drug-induced phospholipidosis (DIPL) of a CAD subset by flow cytometry. Structurally similar compounds (derivatives) and those with similar chemical properties but unrelated structure (analogues) to strong inhibitors were obtained by two in silico similarity search approaches and tested for antiviral activity. Overall 11 out of 45 (24 %) CADs inhibited MARVpp by 40 % or more. The strongest antiviral compounds were dronedarone, triparanol and quinacrine. Structure-activity relationship studies revealed highly significant correlations between antiviral activity, hydrophobicity (ClogP>4), and DIPL. Moreover, pKa and intra-molecular distance between hydrophobic and hydrophilic moieties correlated with antiviral activity, but to a lesser extent. We also showed that in contrast to analogues, derivatives had similar antiviral activity as the seed compound dronedarone. Overall, one quarter of CADs inhibits MARVpp entry in vitro and antiviral activity of CADs mostly relies on their hydrophobicity, yet is promoted by the individual structure.
  • Labyrinthopeptins as virolytic inhibitors of respiratory syncytial virus cell entry.

    Blockus, Sebastian; Sake, Svenja M; Wetzke, Martin; Grethe, Christina; Graalmann, Theresa; Pils, Marina; Le Goffic, Ronan; Galloux, Marie; Prochnow, Hans; Rox, Katharina; et al. (Elsevier, 2020-03-18)
    Acute lower respiratory tract infections (ALRI) caused by respiratory syncytial virus (RSV) are associated with a severe disease burden among infants and elderly patients. Treatment options are limited. While numerous drug candidates with different viral targets are under development, the utility of RSV entry inhibitors is challenged by a low resistance barrier and by single mutations causing cross-resistance against a wide spectrum of fusion inhibitor chemotypes. We developed a cell-based screening assay for discovery of compounds inhibiting infection with primary RSV isolates. Using this system, we identified labyrinthopeptin A1 and A2 (Laby A1/A2), lantibiotics isolated from Actinomadura namibiensis, as effective RSV cell entry inhibitors with IC50s of 0.39 μM and 4.97 μM, respectively, and with favourable therapeutic index (>200 and > 20, respectively). Both molecules were active against multiple RSV strains including primary isolates and their antiviral activity against RSV was confirmed in primary human airway cells ex vivo and a murine model in vivo. Laby A1/A2 were antiviral in prophylactic and therapeutic treatment regimens and displayed synergistic activity when applied in combination with each other. Mechanistic studies showed that Laby A1/A2 exert virolytic activity likely by binding to phosphatidylethanolamine moieties within the viral membrane and by disrupting virus particle membrane integrity. Probably due to its specific mode of action, Laby A1/A2 antiviral activity was not affected by common resistance mutations to known RSV entry inhibitors. Taken together, Laby A1/A2 represent promising candidates for development as RSV inhibitors. Moreover, the cell-based screening system with primary RSV isolates described here should be useful to identify further antiviral agents.
  • Efficient acute and chronic infection of stem cell-derived hepatocytes by hepatitis C virus.

    Carpentier, Arnaud; Sheldon, Julie; Vondran, Florian W R; Brown, Richard Jp; Pietschmann, Thomas; TWINCORE, Zentrum für Experimentelle und Klinische Infektionsforschung GmbH, Feodor-Lynen-Str. 7, 30625 Hannover, Germany. (BMJ Publishing Group, 2020-02-29)
    Transcriptional profiling revealed that HLCs constitutively express messenger RNA of RLRs, and members of the IFN pathway. Moreover, HLCs upregulated IFNs and canonical interferon-regulated genes (IRGs) upon transfection with the double-stranded RNA mimic poly(I:C). Infection of HLCs with Jc1-HCVcc produced only limited viral progeny. In contrast, infection with p100, a Jc1-derived virus population with enhanced replication fitness and partial resistance to IFN, resulted in robust yet transient viraemia. Viral titres declined concomitant with a peak of IRG induction. Addition of ruxolitinib, a JAK/STAT inhibitor, permitted chronic infection and raised p100 infectious virus titres to 1×105 FFU/mL. IRGs expression profiling in infected HLCs revealed a landscape of HCV-dependent transcriptional changes similar to HCV-infected primary human hepatocytes, but distinct from Huh-7.5 cells. Withdrawal of ruxolitinib restored innate immune responses and resulted in HCV clearance.
  • Extracellular Traps: An Ancient Weapon of Multiple Kingdoms.

    Neumann, Ariane; Brogden, Graham; von Köckritz-Blickwede, Maren; TWINCORE, Zentrum für experimentelle und klinische Infektionsforschung GmbH,Feodor-Lynen Str. 7, 30625 Hannover, Germany. (MDPI, 2020-02-18)
    The discovery, in 2004, of extracellular traps released by neutrophils has extended our understanding of the mode of action of various innate immune cells. This fascinating discovery demonstrated the extracellular trapping and killing of various pathogens by neutrophils. During the last decade, evidence has accumulated showing that extracellular traps play a crucial role in the defence mechanisms of various cell types present in vertebrates, invertebrates, and plants. The aim of this review is to summarise the relevant literature on the evolutionary history of extracellular traps used as a weapon in various kingdoms of life.

View more