• Filovirus antiviral activity of cationic amphiphilic drugs is associated with lipophilicity and ability to induce phospholipidosis.

      Gunesch, Antonia P; Zapatero-Belinchon, Francisco J; Pinkert, Lukas; Steinmann, Eike; Manns, Michael P; Schneider, Gisbert; Pietschmann, Thomas; Brönstrup, Mark; von Hahn, Thomas; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany.; TWINCORE, Zentrum für experimentelle und klinische Infektionsforschung GmbH,Feodor-Lynen Str. 7, 30625 Hannover, Germany. (ASM, 2020-06-08)
      Several cationic amphiphilic drugs (CADs) have been found to inhibit cell entry of filoviruses and other enveloped viruses. Structurally unrelated CADs may have antiviral activity, yet the underlying common mechanism and structure-activity relationship are incompletely understood.We aimed to understand how widespread antiviral activity is among CADs and which structural and physico-chemical properties are linked to entry inhibition.We measured inhibition of Marburg virus pseudoparticle (MARVpp) cell entry by 45 heterogeneous and mostly FDA-approved CADs and cytotoxicity in EA.hy926 cells. We analysed correlation of antiviral activity with four chemical properties: pKa, ClogP, molecular weight and distance between the basic group and hydrophobic ring structures. Additionally, we quantified drug-induced phospholipidosis (DIPL) of a CAD subset by flow cytometry. Structurally similar compounds (derivatives) and those with similar chemical properties but unrelated structure (analogues) to strong inhibitors were obtained by two in silico similarity search approaches and tested for antiviral activity. Overall 11 out of 45 (24 %) CADs inhibited MARVpp by 40 % or more. The strongest antiviral compounds were dronedarone, triparanol and quinacrine. Structure-activity relationship studies revealed highly significant correlations between antiviral activity, hydrophobicity (ClogP>4), and DIPL. Moreover, pKa and intra-molecular distance between hydrophobic and hydrophilic moieties correlated with antiviral activity, but to a lesser extent. We also showed that in contrast to analogues, derivatives had similar antiviral activity as the seed compound dronedarone. Overall, one quarter of CADs inhibits MARVpp entry in vitro and antiviral activity of CADs mostly relies on their hydrophobicity, yet is promoted by the individual structure.
    • Labyrinthopeptins as virolytic inhibitors of respiratory syncytial virus cell entry.

      Blockus, Sebastian; Sake, Svenja M; Wetzke, Martin; Grethe, Christina; Graalmann, Theresa; Pils, Marina; Le Goffic, Ronan; Galloux, Marie; Prochnow, Hans; Rox, Katharina; et al. (Elsevier, 2020-03-18)
      Acute lower respiratory tract infections (ALRI) caused by respiratory syncytial virus (RSV) are associated with a severe disease burden among infants and elderly patients. Treatment options are limited. While numerous drug candidates with different viral targets are under development, the utility of RSV entry inhibitors is challenged by a low resistance barrier and by single mutations causing cross-resistance against a wide spectrum of fusion inhibitor chemotypes. We developed a cell-based screening assay for discovery of compounds inhibiting infection with primary RSV isolates. Using this system, we identified labyrinthopeptin A1 and A2 (Laby A1/A2), lantibiotics isolated from Actinomadura namibiensis, as effective RSV cell entry inhibitors with IC50s of 0.39 μM and 4.97 μM, respectively, and with favourable therapeutic index (>200 and > 20, respectively). Both molecules were active against multiple RSV strains including primary isolates and their antiviral activity against RSV was confirmed in primary human airway cells ex vivo and a murine model in vivo. Laby A1/A2 were antiviral in prophylactic and therapeutic treatment regimens and displayed synergistic activity when applied in combination with each other. Mechanistic studies showed that Laby A1/A2 exert virolytic activity likely by binding to phosphatidylethanolamine moieties within the viral membrane and by disrupting virus particle membrane integrity. Probably due to its specific mode of action, Laby A1/A2 antiviral activity was not affected by common resistance mutations to known RSV entry inhibitors. Taken together, Laby A1/A2 represent promising candidates for development as RSV inhibitors. Moreover, the cell-based screening system with primary RSV isolates described here should be useful to identify further antiviral agents.
    • Efficient acute and chronic infection of stem cell-derived hepatocytes by hepatitis C virus.

      Carpentier, Arnaud; Sheldon, Julie; Vondran, Florian W R; Brown, Richard Jp; Pietschmann, Thomas; TWINCORE, Zentrum für Experimentelle und Klinische Infektionsforschung GmbH, Feodor-Lynen-Str. 7, 30625 Hannover, Germany. (BMJ Publishing Group, 2020-02-29)
      Transcriptional profiling revealed that HLCs constitutively express messenger RNA of RLRs, and members of the IFN pathway. Moreover, HLCs upregulated IFNs and canonical interferon-regulated genes (IRGs) upon transfection with the double-stranded RNA mimic poly(I:C). Infection of HLCs with Jc1-HCVcc produced only limited viral progeny. In contrast, infection with p100, a Jc1-derived virus population with enhanced replication fitness and partial resistance to IFN, resulted in robust yet transient viraemia. Viral titres declined concomitant with a peak of IRG induction. Addition of ruxolitinib, a JAK/STAT inhibitor, permitted chronic infection and raised p100 infectious virus titres to 1×105 FFU/mL. IRGs expression profiling in infected HLCs revealed a landscape of HCV-dependent transcriptional changes similar to HCV-infected primary human hepatocytes, but distinct from Huh-7.5 cells. Withdrawal of ruxolitinib restored innate immune responses and resulted in HCV clearance.
    • Extracellular Traps: An Ancient Weapon of Multiple Kingdoms.

      Neumann, Ariane; Brogden, Graham; von Köckritz-Blickwede, Maren; TWINCORE, Zentrum für experimentelle und klinische Infektionsforschung GmbH,Feodor-Lynen Str. 7, 30625 Hannover, Germany. (MDPI, 2020-02-18)
      The discovery, in 2004, of extracellular traps released by neutrophils has extended our understanding of the mode of action of various innate immune cells. This fascinating discovery demonstrated the extracellular trapping and killing of various pathogens by neutrophils. During the last decade, evidence has accumulated showing that extracellular traps play a crucial role in the defence mechanisms of various cell types present in vertebrates, invertebrates, and plants. The aim of this review is to summarise the relevant literature on the evolutionary history of extracellular traps used as a weapon in various kingdoms of life.
    • Robust hepatitis E virus infection and transcriptional response in human hepatocytes.

      Todt, Daniel; Friesland, Martina; Moeller, Nora; Praditya, Dimas; Kinast, Volker; Brüggemann, Yannick; Knegendorf, Leonard; Burkard, Thomas; Steinmann, Joerg; Burm, Rani; et al. (National Academy of Sciences, 2020-01-02)
      Hepatitis E virus (HEV) is the causative agent of hepatitis E in humans and the leading cause for acute viral hepatitis worldwide. The virus is classified as a member of the genus Orthohepevirus A within the Hepeviridae family. Due to the absence of a robust cell culture model for HEV infection, the analysis of the viral life cycle, the development of effective antivirals and a vaccine is severely limited. In this study, we established a protocol based on the HEV genotype 3 p6 (Kernow C-1) and the human hepatoma cell lines HepG2 and HepG2/C3A with different media conditions to produce intracellular HEV cell culture-derived particles (HEVcc) with viral titers between 105 and 106 FFU/mL. Viral titers could be further enhanced by an HEV variant harboring a mutation in the RNA-dependent RNA polymerase. These HEVcc particles were characterized in density gradients and allowed the trans-complementation of subgenomic reporter HEV replicons. In addition, in vitro produced intracellular-derived particles were infectious in liver-humanized mice with high RNA copy numbers detectable in serum and feces. Efficient infection of primary human and swine hepatocytes using the developed protocol could be observed and was inhibited by ribavirin. Finally, RNA sequencing studies of HEV-infected primary human hepatocytes demonstrated a temporally structured transcriptional defense response. In conclusion, this robust cell culture model of HEV infection provides a powerful tool for studying viral-host interactions that should facilitate the discovery of antiviral drugs for this important zoonotic pathogen.
    • Biotechnological Potential of Bacteria Isolated from the Sea Cucumber and from Lampung, Indonesia.

      Wibowo, Joko T; Kellermann, Matthias Y; Versluis, Dennis; Putra, Masteria Y; Murniasih, Tutik; Mohr, Kathrin I; Wink, Joachim; Engelmann, Michael; Praditya, Dimas F; Steinmann, Eike; et al. (MPDI, 2019-11-08)
      In order to minimize re-discovery of already known anti-infective compounds, we focused our screening approach on understudied, almost untapped marine environments including marine invertebrates and their associated bacteria. Therefore, two sea cucumber species, Holothuria leucospilota and Stichopus vastus, were collected from Lampung (Indonesia), and 127 bacterial strains were identified by partial 16S rRNA-gene sequencing analysis and compared with the NCBI database. In addition, the overall bacterial diversity from tissue samples of the sea cucumbers H. leucospilota and S. vastus was analyzed using the cultivation-independent Illumina MiSEQ analysis. Selected bacterial isolates were grown to high densities and the extracted biomass was tested against a selection of bacteria and fungi as well as the hepatitis C virus (HCV). Identification of putative bioactive bacterial-derived compounds were performed by analyzing the accurate mass of the precursor/parent ions (MS1) as well as product/daughter ions (MS2) using high resolution mass spectrometry (HRMS) analysis of all active fractions. With this attempt we were able to identify 23 putatively known and two previously unidentified precursor ions. Moreover, through 16S rRNA-gene sequencing we were able to identify putatively novel bacterial species from the phyla Actinobacteria, Proteobacteria and also Firmicutes. Our findings suggest that sea cucumbers like H. leucospilota and S. vastus are promising sources for the isolation of novel bacterial species that produce compounds with potentially high biotechnological potential.
    • No Evidence of Mosquito Involvement in the Transmission of Equine Hepacivirus (Flaviviridae) in an Epidemiological Survey of Austrian Horses

      Badenhorst, Marcha; de Heus, Phebe; Auer, Angelika; Rümenapf, Till; Tegtmeyer, Birthe; Kolodziejek, Jolanta; Nowotny, Norbert; Steinmann, Eike; Cavalleri, Jessika M.V.; TWINCORE, Zentrum für experimentelle und klinische Infektionsforschung GmbH,Feodor-Lynen Str. 7, 30625 Hannover, Germany. (MPDI, 2019-11-01)
      Prevalence studies have demonstrated a global distribution of equine hepacivirus (EqHV), a member of the family Flaviviridae. However, apart from a single case of vertical transmission, natural routes of EqHV transmission remain elusive. Many known flaviviruses are horizontally transmitted between hematophagous arthropods and vertebrate hosts. This study represents the first investigation of potential EqHV transmission by mosquitoes. More than 5000 mosquitoes were collected across Austria and analyzed for EqHV ribonucleic acid (RNA) by reverse transcription quantitative polymerase chain reaction (RT-qPCR). Concurrently, 386 serum samples from horses in eastern Austria were analyzed for EqHV-specific antibodies by luciferase immunoprecipitation system (LIPS) and for EqHV RNA by RT-qPCR. Additionally, liver-specific biochemistry parameters were compared between EqHV RNA-positive horses and EqHV RNA-negative horses. Phylogenetic analysis was conducted in comparison to previously published sequences from various origins. No EqHV RNA was detected in mosquito pools. Serum samples yielded an EqHV antibody prevalence of 45.9% (177/386) and RNA prevalence of 4.15% (16/386). EqHV RNA-positive horses had significantly higher glutamate dehydrogenase (GLDH) levels (p = 0.013) than control horses. Phylogenetic analysis showed high similarity between nucleotide sequences of EqHV in Austrian horses and EqHV circulating in other regions. Despite frequently detected evidence of EqHV infection in Austrian horses, no viral RNA was found in mosquitoes. It is therefore unlikely that mosquitoes are vectors of this flavivirus.
    • Labyrinthopeptins exert broad-spectrum antiviral activity through lipid-binding-mediated virolysis.

      Prochnow, Hans; Rox, Katharina; Birudukota, N V Suryanarayana; Weichert, Loreen; Hotop, Sven-Kevin; Klahn, Philipp; Mohr, Kathrin; Franz, Sergej; Banda, Dominic H; Blockus, Sebastian; et al. (ASM, 2019-10-30)
      To counteract the serious health threat posed by known and novel viral pathogens, drugs that target a variety of viruses through a common mechanism have attracted recent attention due to their potential in treating (re-)emerging infections, for which direct acting antivirals are not available. We found that labyrinthopeptins A1 and A2, the prototype congeners of carbacyclic lanthipeptides, inhibit the proliferation of diverse enveloped viruses, including Dengue virus, Zika virus, West Nile virus, Hepatitis C virus, Chikungunya virus, Karposi's Sarcoma-associated Herpes virus, Cytomegalovirus, and Herpes Simplex virus, in the low μM to nM range. Mechanistic studies on viral particles revealed that labyrinthopeptins induce a virolytic effect through binding to the viral membrane lipid phosphatidylethanolamine (PE). These effects are enhanced by a combined equimolar application of both labyrinthopeptins, and a clear synergism was observed across a concentration range corresponding to IC10-IC90 values of the compounds. Time-resolved experiments with large unilamellar vesicles (LUVs) reveal that membrane lipid raft compositions (PC/PE/Chol/SM (17:10:33:40)) are particularly sensitive to labyrinthopeptins compared to PC/PE (90:10) LUVs, even though the overall PE-amount remains constant. Labyrinthopeptins exhibited low cytotoxicity and had favorable pharmacokinetic properties in mice (t1/2= 10.0 h), which designates them as promising antiviral compounds acting by an unusual viral lipid targeting mechanism.Importance For many viral infections, current treatment options are insufficient. Because the development of each antiviral drug is time-consuming and expensive, the prospect of finding broad-spectrum antivirals that can fight multiple, diverse viruses - well-known as well as (re-)emerging species - has gained attention, especially for the treatment of viral co-infections. While most known broad spectrum agents address processes in the host cell, we found that targeting lipids of the free virus outside the host cell with the natural products labyrinthopeptin A1 and A2 is a viable strategy to inhibit the proliferation of a broad range of viruses from different families, including Chikungunya virus, Dengue virus, Zika virus, Karposi's Sarcoma-associated Herpes virus, or Cytomegalovirus. Labyrinthopeptins bind to viral phosphatidylethanolamine and induce virolysis without exerting cytotoxicity to host cells. This represents a novel and unusual mechanism to tackle medically relevant viral infections.
    • Characterization of Equine Parvovirus in Thoroughbred Breeding Horses from Germany.

      Meister, Toni Luise; Tegtmeyer, Birthe; Brüggemann, Yannick; Sieme, Harald; Feige, Karsten; Todt, Daniel; Stang, Alexander; Cavalleri, Jessika-M V; Steinmann, Eike; TWINCORE, Zentrum für experimentelle und klinische Infektionsforschung GmbH,Feodor-Lynen Str. 7, 30625 Hannover, Germany. (MPDI, 2019-10-18)
    • Yellow Fever: Integrating Current Knowledge with Technological Innovations to Identify Strategies for Controlling a Re-Emerging Virus.

      Kleinert, Robin D V; Montoya-Diaz, Eduardo; Khera, Tanvi; Welsch, Kathrin; Tegtmeyer, Birthe; Hoehl, Sebastian; Ciesek, Sandra; Brown, Richard J P; TWINCORE, Zentrum für experimentelle und klinische Infektionsforschung GmbH,Feodor-Lynen Str. 7, 30625 Hannover, Germany. (MPDI, 2019-10-17)
      Yellow fever virus (YFV) represents a re-emerging zoonotic pathogen, transmitted by mosquito vectors to humans from primate reservoirs. Sporadic outbreaks of YFV occur in endemic tropical regions, causing a viral hemorrhagic fever (VHF) associated with high mortality rates. Despite a highly effective vaccine, no antiviral treatments currently exist. Therefore, YFV represents a neglected tropical disease and is chronically understudied, with many aspects of YFV biology incompletely defined including host range, host-virus interactions and correlates of host immunity and pathogenicity. In this article, we review the current state of YFV research, focusing on the viral lifecycle, host responses to infection, species tropism and the success and associated limitations of the YFV-17D vaccine. In addition, we highlight the current lack of available treatments and use publicly available sequence and structural data to assess global patterns of YFV sequence diversity and identify potential drug targets. Finally, we discuss how technological advances, including real-time epidemiological monitoring of outbreaks using next-generation sequencing and CRISPR/Cas9 modification of vector species, could be utilized in future battles against this re-emerging pathogen which continues to cause devastating disease
    • Synthesis of 4′/5′-Spirocyclopropanated Uridine and d -Xylouridine Derivatives and Their Activity against the Human Respiratory Syncytial Virus

      Köllmann, Christoph; Wiechert, Svenja M.; Jones, Peter G.; Pietschmann, Thomas; Werz, Daniel B.; TWINCORE, Zentrum für experimentelle und klinische Infektionsforschung GmbH,Feodor-Lynen Str. 7, 30625 Hannover, Germany. (American Chemical Society, 2019-09-06)
    • Chronic Hepatitis E Virus Infection during Lymphoplasmacytic Lymphoma and Ibrutinib Treatment.

      Schlevogt, Bernhard; Kinast, Volker; Reusch, Julia; Kerkhoff, Andrea; Praditya, Dimas; Todt, Daniel; Schmidt, Hartmut H; Steinmann, Eike; Behrendt, Patrick; TWINCORE, Zentrum für experimentelle und klinische Infektionsforschung GmbH,Feodor-Lynen Str. 7, 30625 Hannover, Germany. (MPDI, 2019-08-22)
      Hepatitis E virus (HEV) is an increasingly recognised pathogen, affecting several hundred thousand individuals in western countries each year. Importantly, the majority of immunocompromised individuals are not able to clear HEV but develop a chronic course of infection. In the case of lymphoma, which is an inherent immunosuppressive disease per se, chemotherapy can even further exacerbate the immunosuppressive status. As the mechanism of HEV chronification is barely understood, it is important to gain knowledge about the influence of chemotherapeutic drugs on the HEV replication cycle to guide rational clinical management of HEV infection in such patients. In this case report, a 70 year old man was diagnosed with lymphoplasmacytic lymphoma. As we observed the occurrence of chronic HEV after treatment with the Bruton's tyrosine kinase (BTK) inhibitor ibrutinib in vivo, we investigated the influence of BTK signaling and ibrutinib treatment in the HEV replication cycle in vitro. First, we detected an HEV-induced mobilisation of BTK in human liver cells during HEV replication. A moderate antiviral effect against HEV replicating isolates including genotypes 1 and 3 was observed, suggesting that ibrutinib did not support HEV replication in a direct manner. Combinatory treatments of ibrutinib with ribavirin indicated that ibrutinib did not influence the antiviral effect of ribavirin. Taken together, chemotherapy targeting cellular factors for the treatment of lymphomas may be a neglected risk factor for the chronification of HEV. For ibrutinib, despite the upregulation of its target BTK during HEV replication, we observed neither a proviral effect on HEV replication nor an influence on the antiviral effect of ribavirin, suggesting that the chronification of HEV may be favoured by its immunosuppressive effect.
    • Hepatitis C Virus Entry: Protein Interactions and Fusion Determinants Governing Productive Hepatocyte Invasion.

      Gerold, Gisa; Moeller, Rebecca; Pietschmann, Thomas; TWINCORE, Zentrum für experimentelle und klinische Infektionsforschung GmbH,Feodor-Lynen Str. 7, 30625 Hannover, Germany. (Cold Spring Harbor Laboratory Press, 2019-08-19)
      Hepatitis C virus (HCV) entry is among the best-studied uptake processes for human pathogenic viruses. Uptake follows a spatially and temporally tightly controlled program. Numerous host factors including proteins, lipids, and glycans promote productive uptake of HCV particles into human liver cells. The virus initially attaches to surface proteoglycans, lipid receptors such as the scavenger receptor BI (SR-BI), and to the tetraspanin CD81. After lateral translocation of virions to tight junctions, claudin-1 (CLDN1) and occludin (OCLN) are essential for entry. Clathrin-mediated endocytosis engulfs HCV particles, which fuse with endosomal membranes after pH drop. Uncoating of the viral RNA genome in the cytoplasm completes the entry process. Here we systematically review and classify HCV entry factors by their mechanistic role, relevance, and level of evidence. Finally, we report on more recent knowledge on determinants of membrane fusion and close with an outlook on future implications of HCV entry research.
    • Identification of Keratin 23 as a Hepatitis C Virus-Induced Host Factor in the Human Liver.

      Kinast, Volker; Leber, Stefan L; Brown, Richard J P; Vieyres, Gabrielle; Behrendt, Patrick; Eßbach, Constanze; Strnad, Pavel; Vondran, Florian W R; Cornberg, Markus; Wex, Cora; et al. (MPDI, 2019-06-18)
      Keratin proteins form intermediate filaments, which provide structural support for many tissues. Multiple keratin family members are reported to be associated with the progression of liver disease of multiple etiologies. For example, keratin 23 (KRT23) was reported as a stress-inducible protein, whose expression levels correlate with the severity of liver disease. Hepatitis C virus (HCV) is a human pathogen that causes chronic liver diseases including fibrosis, cirrhosis, and hepatocellular carcinoma. However, a link between KRT23 and hepatitis C virus (HCV) infection has not been reported previously. In this study, we investigated KRT23 mRNA levels in datasets from liver biopsies of chronic hepatitis C (CHC) patients and in primary human hepatocytes experimentally infected with HCV, in addition to hepatoma cells. Interestingly, in each of these specimens, we observed an HCV-dependent increase of mRNA levels. Importantly, the KRT23 protein levels in patient plasma decreased upon viral clearance. Ectopic expression of KRT23 enhanced HCV infection; however, CRIPSPR/Cas9-mediated knockout did not show altered replication efficiency. Taken together, our study identifies KRT23 as a novel, virus-induced host-factor for hepatitis C virus.
    • A central hydrophobic E1 region controls the pH range of hepatitis C virus membrane fusion and susceptibility to fusion inhibitors.

      Banda, Dominic H; Perin, Paula M; Brown, Richard J P; Todt, Daniel; Solodenko, Wladimir; Hoffmeyer, Patrick; Kumar Sahu, Kamlesh; Houghton, Michael; Meuleman, Philip; Müller, Rolf; et al. (Elsevier, 2019-06-01)
    • Equine Parvovirus-Hepatitis Frequently Detectable in Commercial Equine Serum Pools.

      Meister, Toni Luise; Tegtmeyer, Birthe; Postel, Alexander; Cavalleri, Jessika-M V; Todt, Daniel; Stang, Alexander; Steinmann, Eike; TWINCORE, Zentrum für experimentelle und klinische Infektionsforschung GmbH,Feodor-Lynen Str. 7, 30625 Hannover, Germany. (MPDI, 2019-05-21)
      An equine parvovirus-hepatitis (EqPV-H) has been recently identified in association with equine serum hepatitis, also known as Theiler's disease. This disease was first described by Arnold Theiler in 1918 and is often observed after applications with blood products in equines. So far, the virus has only been described in the USA and China. In this study, we evaluated the presence of EqPV-H in several commercial serum samples to assess the potential risk of virus transmission by equine serum-based products for medical and research applications. In 11 out of 18 commercial serum samples, EqPV-H DNA was detectable with a viral load up to 105 copies/mL. The same serum batches as well as three additional samples were also positive for antibodies against the EqPV-H VP1 protein. The countries of origin with detectable viral genomes included the USA, Canada, New Zealand, Italy, and Germany, suggesting a worldwide distribution of EqPV-H. Phylogenetic analysis of the EqPV-H NS1 sequence in commercial serum samples revealed high similarities in viral sequences from different geographical areas. As horse sera are commonly used for the production of anti-sera, which are included in human and veterinary medical products, these results implicate the requirement for diagnostic tests to prevent EqPV-H transmission.
    • Antiviral Meroterpenoid Rhodatin and Sesquiterpenoids Rhodocoranes A-E from the Wrinkled Peach Mushroom, Rhodotus palmatus.

      Sandargo, Birthe; Michehl, Maira; Praditya, Dimas; Steinmann, Eike; Stadler, Marc; Surup, Frank; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany; TWINCORE, Zentrum für experimentelle und klinische Infektionsforschung GmbH,Feodor-Lynen Str. 7, 30625 Hannover, Germany. (American Chemical Society, 2019-05-03)
      Rhodatin (1), a meroterpenoid featuring a unique pentacyclic scaffold with both spiro and spiroketal centers, and five unusual acorane-type sesquiterpenoids, named rhodocoranes A-E (2-6, respectively), are the first natural products isolated from the basidiomycete Rhodotus palmatus. Their structures were elucidated by two-dimensional NMR experiments and HRESIMS, while the absolute configuration of the substance family was determined by Mosher's method utilizing 2. Rhodatin strongly inhibited hepatitis C virus, whereas 4 displayed cytotoxicity and selective antifungal activity.
    • HCV Pit Stop at the Lipid Droplet: Refuel Lipids and Put on a Lipoprotein Coat before Exit.

      Vieyres, Gabrielle; Pietschmann, Thomas; TWINCORE, Zentrum für Experimentelle und klinische Infektionsforschung GmbH, Feodor-Lynen-Str. 7, 30625 Hannover, Germany. (MPDI, 2019-03-12)
      The replication cycle of the liver-tropic hepatitis C virus (HCV) is tightly connected to the host lipid metabolism, during the virus entry, replication, assembly and egress stages, but also while the virus circulates in the bloodstream. This interplay coins viral particle properties, governs viral cell tropism, and facilitates immune evasion. This review summarizes our knowledge of these interactions focusing on the late steps of the virus replication cycle. It builds on our understanding of the cell biology of lipid droplets and the biosynthesis of liver lipoproteins and attempts to explain how HCV hijacks these organelles and pathways to assemble its lipo-viro-particles. In particular, this review describes (i) the mechanisms of viral protein translocation to and from the lipid droplet surface and the orchestration of an interface between replication and assembly complexes, (ii) the importance of the triglyceride mobilization from the lipid droplets for HCV assembly, (iii) the interplay between HCV and the lipoprotein synthesis pathway including the role played by apolipoproteins in virion assembly, and finally (iv) the consequences of these complex virus–host interactions on the virion composition and its biophysical properties. The wealth of data accumulated in the past years on the role of the lipid metabolism in HCV assembly and its imprint on the virion properties will guide vaccine design efforts and reinforce our understanding of the hepatic lipid metabolism in health and disease.
    • Physicochemical Properties Govern the Activity of Potent Antiviral Flavones

      Martin-Benlloch, Xavier; Haid, Sybille; Novodomska, Alexandra; Rominger, Frank; Pietschmann, Thomas; Davioud-Charvet, Elisabeth; Elhabiri, Mourad; TWINCORE, Zentrum für experimentelle und klinische Infektionsforschung GmbH, Feodor-Lynen-Str.7,30625 Hannover, Germany. (American Chemical Society, 2019-03-05)
      Ladanein (i.e., 5,6,7-trihydroxylated flavone) was demonstrated to act as a powerful virucidal agent toward a broad range of enveloped virus particles. Fe(III) coordination and pH are indeed among the key parameters that might favor both bioactivation of the flavone and consequent host cell entry inhibition. In this present work, the impact of fluorinated groups on the physicochemical and antiviral properties of the flavone was investigated, thus allowing a deeper understanding of the antiviral mode of action. The improved synthesis of ladanein allowed accessing a broad range of analogues, some of them being significantly more active than the former ladanein lead compound. We first determined the acido-basic properties of this homogenous series of compounds and then investigated their electrochemical behavior. Fe(III) coordination properties (stability, spectral behavior, and kinetics) of ladanein and its analogues were then examined (quasiphysiological conditions) and provided key information of their stability and reactivity. Using the determined physicochemical parameters, the critical impact of the iron complexation and medium acidity was confirmed on hepatitis C virus (HCV) particles (pre)treated with ladanein. Finally, a preliminary structure–HCV entry inhibition relationship study evidenced the superior antiviral activity of the ladanein analogues bearing an electron-withdrawing group in para position (FCF3 > FOCF3 > FFCF3 > FF > FOMe) on the B cycle in comparison with the parent ladanein itself.
    • Influence of Tattoo Ink on Hepatitis C Virus Infectiousness.

      Behrendt, Patrick; Brüning, Janina; Todt, Daniel; Steinmann, Eike; TWINCORE, Zentrum für experimentelle und klinische Infektionsforschung GmbH, Feodor-Lynen-Str.7,30625 Hannover, Germany. (Oxford Academic, 2019-03-01)
      Hepatitis C virus (HCV) is a blood-borne virus and is most frequently transmitted through large or repeated direct percutaneous exposures to infected blood. The 2 most common exposures associated with transmission of HCV are blood transfusion and intravenous drug abuse. The association between HCV transmission and other suspected risk factors such as tattooing is more controversial. Although HCV can survive for days to weeks in suspension or on inanimate surfaces, its stability in tattooing supplies remains elusive. Here, we analyzed the influence of tattoo ink on HCV infectiousness.