• Frequent presence of hepaci and pegiviruses in commercial equine serum pools.

      Postel, Alexander; Cavalleri, Jessika-M V; Pfaender, Stephanie; Walter, Stephanie; Steinmann, E; Fischer, Nicole; Feige, Karsten; Haas, Ludwig; Becher, Paul; Twincore Centre for Experimental and Clinical Infection Research, a joint venture between the Medical School Hanover and the Helmholtz Centre for Infection Research, Hanover, Germany. (2016-01-15)
      Novel viruses belonging to the genera Hepacivirus and Pegivirus have recently been discovered in horses and other animal species. Viral genomes of non-primate hepaciviruses (NPHV), equine pegivirus 1 (EPgV 1) and Theiler's disease associated virus (TDAV) were detected in a horse serum routinely used for cell culture propagation in our laboratory. Therefore, a study was carried out to further investigate the presence of these human Hepatitis C virus (HCV) related viruses in equine serum based products used in veterinary medicine and for research and to characterize the viral genomes. Without exception all commercially available equine sera purchased for cell culture propagation (n=6) were tested positive for NPHV, EPgV 1 or TDAV genomes by qRT-PCR. Molecular analyses of one single commercial horse serum from Europe confirmed multiple viral genomes, including two TDAV genomes significantly different from the only published TDAV sequence. Furthermore, multiple batches of horse serum pools (n=35) collected for manufacturing of biological products turned out to be positive for NPHV and EPgV 1 genomes. Nevertheless, the final commercial products (n=9) were exclusively tested qRT-PCR negative. Field samples (n=119) obtained from two premises located in the same region as the donor horses were analyzed, demonstrating the frequent presence of NPHV and EPgV 1, but the absence of TDAV genomes. The presence of NPHV, EPgV 1 and TDAV in commercial equine sera and serum based products could have considerable consequences for biosecurity and may also bias the outcome of research studies conducted with related viruses.
    • Functional and immunogenic characterization of diverse HCV glycoprotein E2 variants.

      Khera, Tanvi; Behrendt, Patrick; Bankwitz, Dorothea; Brown, Richard J P; Todt, Daniel; Doepke, Mandy; Ghafoor Khan, Abdul; Schulze, Kai; Law, John; Logan, Michael; et al. (Elsevier, 2018-11-12)
      Induction of cross-reactive antibodies targeting conserved epitopes of the envelope proteins E1E2 is a key requirement for an HCV vaccine. Conserved epitopes like the viral CD81-binding site are targeted by rare broadly neutralizing antibodies. However, these viral segments are occluded by variable regions and glycans. We aimed to identify antigens exposing conserved epitopes and to characterize their immunogenicity. We created HCV variants with mutated glycosylation sites and/or hypervariable region 1 (HVR1). Exposure of the CD81 binding site and conserved epitopes was quantified by soluble CD81 and antibody interaction and neutralization assays. E2 or E1-E2 heterodimers with mutations causing epitope exposure were used to immunize mice. Vaccine-induced antibodies were examined and compared with patient-derived antibodies. Mutant viruses bound soluble CD81 and antibodies targeting the CD81 binding site with enhanced efficacy. Mice immunized with E2 or E1E2 heterodimers incorporating these modifications mounted strong, cross-binding, and non-interfering antibodies. E2-induced antibodies neutralized the autologous virus but they were not cross-neutralizing. Viruses lacking the HVR1 and selected glycosylation sites expose the CD81 binding site and cross-neutralization antibody epitopes. Recombinant E2 proteins carrying these modifications induce strong cross-binding but not cross-neutralizing antibodies.
    • Host cell mTORC1 is required for HCV RNA replication.

      Stöhr, Stefanie; Costa, Rui; Sandmann, Lisa; Westhaus, Sandra; Pfaender, Stephanie; Anggakusuma; Dazert, Eva; Meuleman, Philip; Vondran, Florian W R; Manns, Michael P; et al. (2015-08-14)
      Chronically HCV-infected orthotopic liver transplantation (OLT) recipients appear to have improved outcomes when their immunosuppressive regimen includes a mammalian target of rapamycin (mTOR) inhibitor. The mechanism underlying this observation is unknown.
    • The impact of hepatitis E in the liver transplant setting.

      Behrendt, Patrick; Steinmann, Eike; Manns, Michael P; Wedemeyer, Heiner (2014-12)
      Hepatitis E virus (HEV) infection has been identified as a cause of graft hepatitis in liver transplant recipients. The true frequency and clinical importance of HEV infections after liver transplantations is a matter of debate. It is proposed that consumption of HEV-contaminated undercooked meat is a main source for HEV infections in developed countries--which might also account for some hepatitis E cases after organ transplantation. However, HEV is also transmitted by transfusion of blood products, likely representing a previously underestimated risk particularly for patients in the transplant setting. HEV infection can take chronic courses in immunocompromised individuals, associated in some cases with rapid progression to cirrhosis within 1-2 years of infection. Diagnosis in transplanted patients is based on HEV RNA testing as antibody assays are not sensitive enough. Selection of immunosuppressive drugs is important as different compounds may influence viral replication and the course of liver disease. Ribavirin has antiviral activity against HEV and should be administered for at least three months in chronically infected individuals; however, treatment failure may occur. HEV infections have also been linked to a variety of extrahepatic manifestations both during and after resolution of infection. In this review we summarize the emerging data on hepatitis E with a particular focus on the importance of HEV infections for liver transplant recipients.
    • In vivo evidence for ribavirin-induced mutagenesis of the hepatitis E virus genome.

      Todt, Daniel; Gisa, Anett; Radonic, Aleksandar; Nitsche, Andreas; Behrendt, Patrick; Suneetha, Pothakamuri Venkata; Pischke, Sven; Bremer, Birgit; Brown, Richard J P; Manns, Michael P; et al. (2016-10)
      Hepatitis E virus (HEV) infection can take chronic courses in immunocompromised patients potentially leading to liver cirrhosis and liver failure. Ribavirin (RBV) is currently the only treatment option for many patients, but treatment failure can occur which has been associated with the appearance of a distinct HEV polymerase mutant (G1634R). Here, we performed a detailed analysis of HEV viral intrahost evolution during chronic hepatitis E infections.
    • Inactivation of HCV and HIV by microwave: a novel approach for prevention of virus transmission among people who inject drugs.

      Siddharta, Anindya; Pfaender, Stephanie; Malassa, Angelina; Doerrbecker, Juliane; Anggakusuma; Engelmann, Michael; Nugraha, Boya; Steinmann, Joerg; Todt, Daniel; Vondran, Florian W R; et al. (2016-11-18)
      Hepatitis C virus (HCV) and human immunodeficiency virus (HIV-1) transmissions among people who inject drugs (PWID) continue to pose a challenging global health problem. Here, we aimed to analyse a universally applicable inactivation procedure, namely microwave irradiation, as a safe and effective method to reduce the risk of viral transmission. The exposure of HCV from different genotypes to microwave irradiation resulted in a significant reduction of viral infectivity. Furthermore, microwave irradiation reduced viral infectivity of HIV-1 and of HCV/HIV-1 suspensions indicating that this inactivation may be effective at preventing co-infections. To translate microwave irradiation as prevention method to used drug preparation equipment, we could further show that HCV as well as HIV-1 infectivity could be abrogated in syringes and filters. This study demonstrates the power of microwave irradiation for the reduction of viral transmission and establishment of this safety strategy could help reduce the transmission of blood-borne viruses.
    • Inactivation of Zika virus in human breast milk by prolonged storage or pasteurization.

      Pfaender, Stephanie; Vielle, Nathalie J; Ebert, Nadine; Steinmann, Eike; Alves, Marco P; Thiel, Volker; Twincore Centre of Experimental and Clinical Infection Research; a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover 30625, Germany. (2016-11-23)
      Zika virus infection during pregnancy poses a serious risk for pregnant women as it can cause severe birth defects. Even though the virus is mainly transmitted via mosquitos, human-to-human transmission has been described. Infectious viral particles have been detected in breast milk of infected women which raised concerns regarding the safety of breastfeeding in areas of Zika virus transmission or in case of a suspected or confirmed Zika virus infection. In this study, we show that Zika virus is effectively inactivated in human breast milk after prolonged storage or upon pasteurization of milk.
    • Influence of Tattoo Ink on Hepatitis C Virus Infectiousness.

      Behrendt, Patrick; Brüning, Janina; Todt, Daniel; Steinmann, Eike; TWINCORE, Zentrum für experimentelle und klinische Infektionsforschung GmbH, Feodor-Lynen-Str.7,30625 Hannover, Germany. (Oxford Academic, 2019-03-01)
      Hepatitis C virus (HCV) is a blood-borne virus and is most frequently transmitted through large or repeated direct percutaneous exposures to infected blood. The 2 most common exposures associated with transmission of HCV are blood transfusion and intravenous drug abuse. The association between HCV transmission and other suspected risk factors such as tattooing is more controversial. Although HCV can survive for days to weeks in suspension or on inanimate surfaces, its stability in tattooing supplies remains elusive. Here, we analyzed the influence of tattoo ink on HCV infectiousness.
    • Interferon-beta expression and type I interferon receptor signaling of hepatocytes prevent hepatic necrosis and virus dissemination in Coxsackievirus B3-infected mice.

      Koestner, Wolfgang; Spanier, Julia; Klause, Tanja; Tegtmeyer, Pia-K; Becker, Jennifer; Herder, Vanessa; Borst, Katharina; Todt, Daniel; Lienenklaus, Stefan; Gerhauser, Ingo; et al. (2018-08-01)
      During Coxsackievirus B3 (CVB3) infection hepatitis is a potentially life threatening complication, particularly in newborns. Studies with type I interferon (IFN-I) receptor (IFNAR)-deficient mice revealed a key role of the IFN-I axis in the protection against CVB3 infection, whereas the source of IFN-I and cell types that have to be IFNAR triggered in order to promote survival are still unknown. We found that CVB3 infected IFN-β reporter mice showed effective reporter induction, especially in hepatocytes and only to a minor extent in liver-resident macrophages. Accordingly, upon in vitro CVB3 infection of primary hepatocytes from murine or human origin abundant IFN-β responses were induced. To identify sites of IFNAR-triggering we performed experiments with Mx reporter mice, which upon CVB3 infection showed massive luciferase induction in the liver. Immunohistological studies revealed that during CVB3 infection MX1 expression of hepatocytes was induced primarily by IFNAR-, and not by IFN-III receptor (IFNLR)-triggering. CVB3 infection studies with primary human hepatocytes, in which either the IFN-I or the IFN-III axis was inhibited, also indicated that primarily IFNAR-, and to a lesser extent IFNLR-triggering was needed for ISG induction. Interestingly, CVB3 infected mice with a hepatocyte-specific IFNAR ablation showed severe liver cell necrosis and ubiquitous viral dissemination that resulted in lethal disease, as similarly detected in classical IFNAR-/- mice. In conclusion, we found that during CVB3 infection hepatocytes are major IFN-I producers and that the liver is also the organ that shows strong IFNAR-triggering. Importantly, hepatocytes need to be IFNAR-triggered in order to prevent virus dissemination and to assure survival. These data are compatible with the hypothesis that during CVB3 infection hepatocytes serve as important IFN-I producers and sensors not only in the murine, but also in the human system.
    • Mechanisms of methods for hepatitis C virus inactivation.

      Pfaender, Stephanie; Brinkmann, Janine; Todt, Daniel; Riebesehl, Nina; Steinmann, Joerg; Steinmann, Jochen; Pietschmann, Thomas; Steinmann, Eike; Institute for Experimental Virology, TWINCORE Centre for Experimental and Clinical Infection Research,Feodor-Lynen-Str. 7, 30625 Hannover, Germany. (2015-03-01)
      Virus inactivation by chemical disinfectants is an important instrument for infection control in medical settings, but the mechanisms involved are poorly understood. In this study, we systematically investigated the effects of several antiviral treatments on hepatitis C virus (HCV) particles as model for enveloped viruses. Studies were performed with authentic cell culture-derived viruses, and the influence of chemical disinfectants, heat, and UV treatment on HCV was analyzed by the determination of infectious particles in a limiting-dilution assay, by quantitative reverse transcription-PCR, by core enzyme-linked immunosorbent assay, and by proteolytic protection assay. All different inactivation methods resulted in a loss of HCV infectivity by targeting different parts of the virus particle. Alcohols such as ethanol and 2-propanol did not affect the viral RNA genome integrity but disrupted the viral envelope membrane in a capsid protection assay. Heat and UV treatment of HCV particles resulted in direct damage of the viral genome since transfection of viral particle-associated RNA into permissive cells did not initiate RNA replication. In addition, heat incubation at 80°C disrupted the HCV envelope, rendering the viral capsid susceptible to proteolytic digest. This study demonstrated the molecular processes of viral inactivation of an enveloped virus and should facilitate the development of effective disinfection strategies in infection control not only against HCV but also against other enveloped viruses.
    • Methylene Blue Treatment of Grafts During Cold Ischemia Time Reduces the Risk of Hepatitis C Virus Transmission.

      Helfritz, Fabian A; Bojkova, Denisa; Wanders, Verena; Kuklinski, Nina; Westhaus, Sandra; von Horn, Charlotte; Rauen, Ursula; Gallinat, Anja; Baba, Hideo A; Skyschally, Andreas; et al. (Oxford Academic, 2018-12-01)
      Background: Although organ shortage is a rising problem, organs from hepatitis C virus (HCV) ribonucleic acid (RNA)-positive donors are not routinely transplanted in HCV-negative individuals. Because HCV only infects hepatocytes, other organs such as kidneys are merely contaminated with HCV via the blood. In this study, we established a protocol to reduce HCV virions during the cold ischemic time. Methods: Standard virological assays were used to investigate the effect of antivirals, including methylene blue (MB), in different preservation solutions. Kidneys from mini pigs were contaminated with Jc1 or HCV RNA-positive human serum. Afterwards, organs were flushed with MB. Hypothermic machine perfusion was used to optimize reduction of HCV. Results: Three different antivirals were investigated for their ability to inactivate HCV in vitro. Only MB completely inactivated HCV in the presence of all perfusion solutions. Hepatitis C virus-contaminated kidneys from mini pigs were treated with MB and hypothermic machine perfusion without any negative effect on the graft. Human liver-uPA-SCID mice did not establish HCV infection after inoculation with flow through from these kidneys. Conclusions: This proof-of-concept study is a first step to reduce transmission of infectious HCV particles in the transplant setting and might serve as a model for other relevant pathogens.
    • Mutagenic Effects of Ribavirin on Hepatitis E Virus-Viral Extinction versus Selection of Fitness-Enhancing Mutations.

      Todt, Daniel; Walter, Stephanie; Brown, Richard J P; Steinmann, Eike; TWINCORE, Centre for experimental and clinical infection research GmbH, Feodor-Lynen Str. 7, 30625 Hannover, Germany. (2016-10-13)
      Hepatitis E virus (HEV), an important agent of viral hepatitis worldwide, can cause severe courses of infection in pregnant women and immunosuppressed patients. To date, HEV infections can only be treated with ribavirin (RBV). Major drawbacks of this therapy are that RBV is not approved for administration to pregnant women and that the virus can acquire mutations, which render the intra-host population less sensitive or even resistant to RBV. One of the proposed modes of action of RBV is a direct mutagenic effect on viral genomes, inducing mismatches and subsequent nucleotide substitutions. These transition events can drive the already error-prone viral replication beyond an error threshold, causing viral population extinction. In contrast, the expanded heterogeneous viral population can facilitate selection of mutant viruses with enhanced replication fitness. Emergence of these mutant viruses can lead to therapeutic failure. Consequently, the onset of RBV treatment in chronically HEV-infected individuals can result in two divergent outcomes: viral extinction versus selection of fitness-enhanced viruses. Following an overview of RNA viruses treated with RBV in clinics and a summary of the different antiviral modes of action of this drug, we focus on the mutagenic effect of RBV on HEV intrahost populations, and how HEV is able to overcome lethal mutagenesis.
    • The natural compound silvestrol inhibits hepatitis E virus (HEV) replication in vitro and in vivo.

      Todt, Daniel; Moeller, Nora; Praditya, Dimas; Kinast, Volker; Friesland, Martina; Engelmann, Michael; Verhoye, Lieven; Sayed, Ibrahim M; Behrendt, Patrick; Dao Thi, Viet Loan; et al. (2018-09-01)
      Hepatitis E virus (HEV) is the causative agent of hepatitis E in humans and a member of the genus Orthohepevirus in the family Hepeviridae. HEV infections are the common cause of acute hepatitis but can also take chronic courses. Ribavirin is the treatment of choice for most patients and type I interferon (IFN) has been evaluated in a few infected transplantation patients in vivo. However, no effective and specific treatments against HEV infections are currently available. In this study, we evaluated the natural compound silvestrol, isolated from the plant Aglaia foveolata, and known for its specific inhibition of the DEAD-box RNA helicase eIF4A in state-of-the-art HEV experimental model systems. Silvestrol blocked HEV replication of different subgenomic replicons in a dose-dependent manner at low nanomolar concentrations and acted additive to ribavirin (RBV). In addition, HEV p6-based full length replication and production of infectious particles was reduced in the presence of silvestrol. A pangenotypic effect of the compound was further demonstrated with primary isolates from four different human genotypes in HEV infection experiments of hepatocyte-like cells derived from human embryonic and induced pluripotent stem cells. In vivo, HEV RNA levels rapidly declined in the feces of treated mice while no effect was observed in the vehicle treated control animals. In conclusion, silvestrol could be identified as pangenotypic HEV replication inhibitor in vitro with additive effect to RBV and further demonstrated high potency in vivo. The compound therefore may be considered in future treatment strategies of chronic hepatitis E in immunocompromised patients.
    • Natural reservoirs for homologs of hepatitis C virus.

      Pfaender, Stephanie; Brown, Richard Jp; Pietschmann, Thomas; Steinmann, Eike; Twincore Centre of Experimental and Clinical Infection Research; a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover 30625, Germany. (2014-03)
      Hepatitis C virus is considered a major public health problem, infecting 2%-3% of the human population. Hepatitis C virus infection causes acute and chronic liver disease, including chronic hepatitis, cirrhosis and hepatocellular carcinoma. In fact, hepatitis C virus infection is the most frequent indication for liver transplantation and a vaccine is not available. Hepatitis C virus displays a narrow host species tropism, naturally infecting only humans, although chimpanzees are also susceptible to experimental infection. To date, there is no evidence for an animal reservoir of viruses closely related to hepatitis C virus which may have crossed the species barrier to cause disease in humans and resulted in the current pandemic. In fact, due to this restricted host range, a robust immunocompetent small animal model is still lacking, hampering mechanistic analysis of virus pathogenesis, immune control and prophylactic vaccine development. Recently, several studies discovered new viruses related to hepatitis C virus, belonging to the hepaci- and pegivirus genera, in small wild mammals (rodents and bats) and domesticated animals which live in close contact with humans (dogs and horses). Genetic and biological characterization of these newly discovered hepatitis C virus-like viruses infecting different mammals will contribute to our understanding of the origins of hepatitis C virus in humans and enhance our ability to study pathogenesis and immune responses using tractable animal models. In this review article, we start with an introduction on the genetic diversity of hepatitis C virus and then focus on the newly discovered viruses closely related to hepatitis C virus. Finally, we discuss possible theories about the origin of this important viral human pathogen.
    • Pentagalloylglucose, a highly bioavailable polyphenolic compound present in Cortex moutan, efficiently blocks hepatitis C virus entry.

      Behrendt, Patrick; Perin, Paula; Menzel, Nicolas; Branda, Dominic; Pfaender, Stephanie; Alves, Marco P.; Thiel, Volker; Meulemann, Philip; Colpit, Che C.; Schang, Luis M.; et al. (2017-01-01)
      Approximately 142 million people worldwide are infected with hepatitis C virus (HCV). Although potent direct acting antivirals are available, high costs limit access to treatment. Chronic hepatitis C virus infection remains a major cause of orthotopic liver transplantation. Moreover, re-infection of the graft occurs regularly. Antivirals derived from natural sources might be an alternative and cost-effective option to complement therapy regimens for global control of hepatitis C virus infection. We tested the antiviral properties of a mixture of different Chinese herbs/roots named Zhi Bai Di Huang Wan (ZBDHW) and its individual components on HCV. One of the ZBDHW components, Penta-O-Galloyl-Glucose (PGG), was further analyzed for its mode of action in vitro, its antiviral activity in primary human hepatocytes as well as for its bioavailability and hepatotoxicity in mice. ZBDHW, its component Cortex Moutan and the compound PGG efficiently block entry of HCV of all major genotypes and also of the related flavivirus Zika virus. PGG does not disrupt HCV virion integrity and acts primarily during virus attachment. PGG shows an additive effect when combined with the well characterized HCV inhibitor Daclatasvir. Analysis of bioavailability in mice revealed plasma levels above tissue culture IC
    • Prevalence and characterization of azole-resistant Aspergillus fumigatus in patients with cystic fibrosis: a prospective multicentre study in Germany.

      Seufert, R; Sedlacek, L; Kahl, B; Hogardt, M; Hamprecht, A; Haase, G; Gunzer, F; Haas, A; Grauling-Halama, S; MacKenzie, C R; et al. (2018-08-01)
      Aspergillus fumigatus is the most prevalent filamentous fungus in the respiratory tract of patients with cystic fibrosis (CF). The aim of this prospective multicentre study was to investigate the prevalence of azole-resistant A. fumigatus (ARAF) in respiratory secretions from CF patients across Germany and to characterize ARAF isolates by phenotypic and molecular methods. Twelve tertiary care centres from Germany participated in the study. In total, 2888 A. fumigatus isolates from 961 CF patients were screened for ARAF by using azole-containing agar plates. Antifungal susceptibility testing of isolates was performed by broth microdilution according to EUCAST guidelines. Analysis of mutations mediating resistance was performed using PCR and sequencing of the cyp51A gene. Furthermore, genotyping by microsatellite PCR was performed. Of a total of 2888 A. fumigatus isolates, 101 isolates from 51 CF patients were found to be azole resistant (prevalence per patient 5.3%). The Essen centre had the highest prevalence (9.1%) followed by Munich (7.8%), Münster (6.0%) and Hannover (5.2%). Most ARAF isolates (n = 89) carried the TR34/L98H mutation followed by eight G54E/R, one TR46/Y121F/T289A and one F219S mutation. In two isolates no mutation was found. Genotyping results showed no major clustering. Forty-five percent of CF patients with ARAF had previously received azole therapy. This is the first multicentre study analysing the prevalence of ARAF isolates in German CF patients. Because of a resistance rate of up to 9%, susceptibility testing of A. fumigatus isolates from CF patients receiving antifungal treatment should be part of standard diagnostic work-up.
    • Prevention strategies for blood-borne viruses-in the Era of vaccines, direct acting antivirals and antiretroviral therapy.

      Pfaender, Stephanie; von Hahn, Thomas; Steinmann, Joerg; Ciesek, Sandra; Steinmann, Eike; Twincore Centre of Experimental and Clinical Infection Research; a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover 30625, Germany. (2016-09)
      Blood-borne viruses, such as hepatitis B virus, hepatitis C virus, human immunodeficiency virus, and the facultative blood-borne hepatitis E virus, are considered a major public health problem given that they are accountable for millions of deaths each year. Treatment options, including effective vaccine design, development of antiviral strategies and the implementation of antiretroviral therapy have improved substantially over the last couple of years and contribute to successful treatment and prevention of these infectious diseases. In this review, we summarise the current knowledge and concepts in prevention of transmission of these blood-borne viruses.
    • Six Heterocyclic Metabolites from the Myxobacterium Labilithrix luteola.

      Mulwa, Lucky S; Jansen, Rolf; Praditya, Dimas F; Mohr, Kathrin I; Wink, Joachim; Steinmann, Eike; Stadler, Marc; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2018-02-28)
      Two new secondary metabolites, labindole A [2-methyl-3-(2-nitroethyl)-3H-indole] (1) and labindole B [2-methyl-3-(2-nitrovinyl)-3H-indole] (2), were isolated from the myxobacteriumLabilithrixluteola(DSM 27648T). Additionally, four metabolites3,4,5and6already known from other sources were obtained. Their structures were elucidated from high resolution electrospray ionisation mass spectrometry (HRESIMS) and 1D and 2D nuclear magnetic resonance (NMR) spectroscopy data and their relative configuration was assigned based on nuclear Overhauser effect (NOE) and vicinal ¹H-NMR coupling data. The compounds where tested for biological activities; labindoles A (1) and B (2) exhibited significant activity against Hepatitis C Virus, 9H-carbazole (3), 3-chloro-9H-carbazole (4) and 4-hydroxymethyl-quinoline (5) showed antifungal activities. Moreover, compound3had weak to moderate antibacterial activities, while labindoles A (1) and B (2) were devoid of significant antifungal and antibacterial effects.
    • Successful retreatment of a patient with chronic hepatitis C genotype 2k/1b virus with ombitasvir/paritaprevir/ritonavir plus dasabuvir.

      Todt, Daniel; Schlevogt, Bernhard; Deterding, Katja; Grundhoff, Adam; Manns, Michael P; Wedemeyer, Heiner; Fischer, Nicole; Cornberg, Markus; Steinmann, Eike; Twincore Centre of Experimental and Clinical Infection Research; a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover 30625, Germany. (2017-01-18)
    • Susceptibility of Chikungunya Virus to Inactivation by Heat and Commercially and World Health Organization-Recommended Biocides.

      Franz, Sergej; Friesland, Martina; Passos, Vânia; Todt, Daniel; Simmons, Graham; Goffinet, Christine; Steinmann, Eike; TWINCORE, Zentrum für experimentelle und klinische Infektionsforschung GmbH,Feodor-Lynen Str. 7, 30625 Hannover, Germany. (Oxford University Press, 2018-09-22)
      Despite increasing clinical relevance of Chikungunya virus (CHIKV) infection, caused by a rapidly emerging pathogen, recommended guidelines for its inactivation do not exist. In this study, we investigated the susceptibility of CHIKV to inactivation by heat and commercially available hand, surface, and World Health Organization-recommended disinfectants to define CHIKV prevention protocols for healthcare systems.