• Advanced in vitro lung-on-chip platforms for inhalation assays: From prospect to pipeline.

      Artzy-Schnirman, Arbel; Hobi, Nina; Schneider-Daum, Nicole; Guenat, Olivier T; Lehr, Claus-Michael; Sznitman, Josué; HIPS, Helmholtz-Institut für Pharmazeutische Forschung Saarland, Universitätscampus E8.1 66123 Saarbrücken, Germany. (Elsevier, 2019-09-06)
      With rapid advances in micro-fabrication processes and the availability of biologically-relevant lung cells, the development of lung-on-chip platforms is offering novel avenues for more realistic inhalation assays in pharmaceutical research, and thereby an opportunity to depart from traditional in vitro lung assays. As advanced models capturing the cellular pulmonary make-up at an air-liquid interface (ALI), lung-on-chips emulate both morphological features and biological functionality of the airway barrier with the ability to integrate respiratory breathing motions and ensuing tissue strains. Such in vitro systems allow importantly to mimic more realistic physiological respiratory flow conditions, with the opportunity to integrate physically-relevant transport determinants of aerosol inhalation therapy, i.e. recapitulating the pathway from airborne flight to deposition on the airway lumen. In this short opinion, we discuss such points and describe how these attributes are paving new avenues for exploring improved drug carrier designs (e.g. shape, size, etc.) and targeting strategies (e.g. conductive vs. respiratory regions) amongst other. We argue that while technical challenges still lie along the way in rendering in vitro lung-on-chip platforms more widespread across the general pharmaceutical research community, significant momentum is steadily underway in accelerating the prospect of establishing these as in vitro "gold standards"
    • Advancing human pulmonary disease models in preclinical research: opportunities for lung-on-chips..

      Artzy-Schnirman, Arbel; Lehr, Claus-Michael; Sznitman, Josué; HIPS, Helmholtz-Institut für Pharmazeutische Forschung Saarland, Universitätscampus E8.1 66123 Saarbrücken, Germany. (Taylor&Francis, 2020-03-11)
      [No abstracr available]
    • Capturing the Onset of Bacterial Pulmonary Infection in Acini-On-Chips

      Artzy-Schnirman, Arbel; Zidan, Hikaia; Elias-Kirma, Shani; Ben-Porat, Lee; Tenenbaum-Katan, Janna; Carius, Patrick; Fishler, Ramy; Schneider-Daum, Nicole; Lehr, Claus Michael; Sznitman, Josué (Wiley-VCH, 2019-09-01)
    • PerfuPul-A Versatile Perfusable Platform to Assess Permeability and Barrier Function of Air Exposed Pulmonary Epithelia.

      Carius, Patrick; Dubois, Aurélie; Ajdarirad, Morvarid; Artzy-Schnirman, Arbel; Sznitman, Josué; Schneider-Daum, Nicole; Lehr, Claus-Michael; HIPS, Helmholtz-Institut für Pharmazeutische Forschung Saarland, Universitätscampus E8.1, 66123 Saarbrücken, Germany. (Frontiers, 2021-10-06)
      Complex in vitro models, especially those based on human cells and tissues, may successfully reduce or even replace animal models within pre-clinical development of orally inhaled drug products. Microfluidic lung-on-chips are regarded as especially promising models since they allow the culture of lung specific cell types under physiological stimuli including perfusion and air-liquid interface (ALI) conditions within a precisely controlled in vitro environment. Currently, though, such models are not available to a broad user community given their need for sophisticated microfabrication techniques. They further require systematic comparison to well-based filter supports, in analogy to traditional Transwells®. We here present a versatile perfusable platform that combines the advantages of well-based filter supports with the benefits of perfusion, to assess barrier permeability of and aerosol deposition on ALI cultured pulmonary epithelial cells. The platform as well as the required technical accessories can be reproduced via a detailed step-by-step protocol and implemented in typical bio-/pharmaceutical laboratories without specific expertise in microfabrication methods nor the need to buy costly specialized equipment. Calu-3 cells cultured under liquid covered conditions (LCC) inside the platform showed similar development of transepithelial electrical resistance (TEER) over a period of 14 days as cells cultured on a traditional Transwell®. By using a customized deposition chamber, fluorescein sodium was nebulized via a clinically relevant Aerogen® Solo nebulizer onto Calu-3 cells cultured under ALI conditions within the platform. This not only allowed to analyze the transport of fluorescein sodium after ALI deposition under perfusion, but also to compare it to transport under traditional static conditions.