• Aspherical and Spherical InvA497-Functionalized Nanocarriers for Intracellular Delivery of Anti-Infective Agents.

      Castoldi, Arianna; Empting, Martin; De Rossi, Chiara; Mayr, Karsten; Dersch, Petra; Hartmann, Rolf; Müller, Rolf; Gordon, Sarah; Lehr, Claus-Michael; HIPS, Helmholtz-Institut für Pharmazeutische Forschung Saarland, Universitätscampus E8.1 66123 Saarbrücken, Germany. (Springer, 2018-12-05)
      The objective of this work was to evaluate the potential of polymeric spherical and aspherical invasive nanocarriers, loaded with antibiotic, to access and treat intracellular bacterial infections. Aspherical nanocarriers were prepared by stretching of spherical precursors, and both aspherical and spherical nanocarriers were surface-functionalized with the invasive protein InvA497. The relative uptake of nanocarriers into HEp-2 epithelial cells was then assessed. Nanocarriers were subsequently loaded with a preparation of the non-permeable antibiotic gentamicin, and tested for their ability to treat HEp-2 cells infected with the enteroinvasive bacterium Shigella flexneri. InvA497-functionalized nanocarriers of both spherical and aspherical shape showed a significantly improved rate and extent of uptake into HEp-2 cells in comparison to non-functionalized nanocarriers. Functionalized and antibiotic-loaded nanocarriers demonstrated a dose dependent killing of intracellular S. flexneri. A slight but significant enhancement of intracellular bacterial killing was also observed with aspherical as compared to spherical functionalized nanocarriers at the highest tested concentration. InvA497-functionalized, polymer-based nanocarriers were able to efficiently deliver a non-permeable antibiotic across host cell membranes to affect killing of intracellular bacteria. Functionalized nanocarriers with an aspherical shape showed an interesting future potential for intracellular infection therapy.
    • The bacterial cell envelope as delimiter of anti-infective bioavailability - An in vitro permeation model of the Gram-negative bacterial inner membrane.

      Graef, Florian; Vukosavljevic, Branko; Michel, Jean-Philippe; Wirth, Marius; Ries, Oliver; De Rossi, Chiara; Windbergs, Maike; Rosilio, Véronique; Ducho, Christian; Gordon, Sarah; et al. (2016)
      Gram-negative bacteria possess a unique and complex cell envelope, composed of an inner and outer membrane separated by an intermediate cell wall-containing periplasm. This tripartite structure acts intrinsically as a significant biological barrier, often limiting the permeation of anti-infectives, and so preventing such drugs from reaching their target. Furthermore, identification of the specific permeation-limiting envelope component proves difficult in the case of many anti-infectives, due to the challenges associated with isolation of individual cell envelope structures in bacterial culture. The development of an in vitro permeation model of the Gram-negative inner membrane, prepared by repeated coating of physiologically-relevant phospholipids on Transwell®filter inserts, is therefore reported, as a first step in the development of an overall cell envelope model. Characterization and permeability investigations of model compounds as well as anti-infectives confirmed the suitability of the model for quantitative and kinetically-resolved permeability assessment, and additionally confirmed the importance of employing bacteria-specific base materials for more accurate mimicking of the inner membrane lipid composition - both advantages compared to the majority of existing in vitro approaches. Additional incorporation of further elements of the Gram-negative bacterial cell envelope could ultimately facilitate model application as a screening tool in anti-infective drug discovery or formulation development.
    • Kinetics of mRNA delivery and protein translation in dendritic cells using lipid-coated PLGA nanoparticles.

      Yasar, Hanzey; Biehl, Alexander; De Rossi, Chiara; Koch, Marcus; Murgia, Xabi; Loretz, Brigitta; Lehr, Claus-Michael; HIPS, Helmholtz-Institut für pharmazeutische Forschung Saarland, Universitätscampus 8.1, 66123 Saarbrücken, Germany. (2018-09-19)
      Messenger RNA (mRNA) has gained remarkable attention as an alternative to DNA-based therapies in biomedical research. A variety of biodegradable nanoparticles (NPs) has been developed including lipid-based and polymer-based systems for mRNA delivery. However, both systems still lack in achieving an efficient transfection rate and a detailed understanding of the mRNA transgene expression kinetics. Therefore, quantitative analysis of the time-dependent translation behavior would provide a better understanding of mRNA's transient nature and further aid the enhancement of appropriate carriers with the perspective to generate future precision nanomedicines with quick response to treat various diseases. A lipid-polymer hybrid system complexed with mRNA was evaluated regarding its efficiency to transfect dendritic cells (DCs) by simultaneous live cell video imaging of both particle uptake and reporter gene expression. We prepared and optimized NPs consisting of poly (lactid-co-glycolid) (PLGA) coated with the cationic lipid 1, 2-di-O-octadecenyl-3-trimethylammonium propane abbreviated as LPNs. An earlier developed polymer-based delivery system (chitosan-PLGA NPs) served for comparison. Both NPs types were complexed with mRNA-mCherry at various ratios. While cellular uptake and toxicity of either NPs was comparable, LPNs showed a significantly higher transfection efficiency of ~ 80% while chitosan-PLGA NPs revealed only ~ 5%. Further kinetic analysis elicited a start of protein translation after 1 h, with a maximum after 4 h and drop of transgene expression after 48 h post-transfection, in agreement with the transient nature of mRNA. Charge-mediated complexation of mRNA to NPs enables efficient and fast cellular delivery and subsequent protein translation. While cellular uptake of both NP types was comparable, mRNA transgene expression was superior to polymer-based NPs when delivered by lipid-polymer NPs.
    • Starch-Chitosan Polyplexes: A Versatile Carrier System for Anti-Infectives and Gene Delivery

      Yasar, Hanzey; Ho, Duy-Khiet; De Rossi, Chiara; Herrmann, Jennifer; Gordon, Sarah; Loretz, Brigitta; Lehr, Claus Michael; HIPS, Helmholtz-Institut für pharmazeutische Forschung Saarland, Universitätscampus 8.1, 66123 Saarbrücken, Germany. (2018-03-01)