• Analysis and optimization of two film-coated tablet production processes by computer simulation: A case study

      Hering, Stefanie; Schäuble, Nico; Buck, Thomas M.; Loretz, Brigitta; Rillmann, Thomas; Stieneker, Frank; Lehr, Claus Michael; HIPS, Helmholtz-Institut für Pharmazeutische Forschung Saarland, Universitätscampus E8.1 66123 Saarbrücken, Germany. (MDPI, 2021-01-01)
      Increasing regulatory demands are forcing the pharmaceutical industry to invest its available resources carefully. This is especially challenging for small- and middle-sized companies. Computer simulation software like FlexSim allows one to explore variations in production processes without the need to interrupt the running process. Here, we applied a discrete-event simulation to two approved film-coated tablet production processes. The simulations were performed with FlexSim (FlexSim Deutschland—Ingenieurbüro für Simulationsdienstleistung Ralf Gruber, Kirchlengern, Germany). Process visualization was done using Cmap Tools (Florida Institute for Human and Machine Cognition, Pensacola, FL, USA), and statistical analysis used MiniTab® (Minitab GmbH, Munich, Germany). The most critical elements identified during model building were the model logic, operating schedule, and processing times. These factors were graphically and statistically verified. To optimize the utilization of employees, three different shift systems were simulated, thereby revealing the advantages of two-shift and one-and-a-half-shift systems compared to a one-shift system. Without the need to interrupt any currently running production processes, we found that changing the shift system could save 50–53% of the campaign duration and 9–14% of the labor costs. In summary, we demonstrated that FlexSim, which is mainly used in logistics, can also be advantageously implemented for modeling and optimizing pharmaceutical production processes.
    • Autologous co-culture of primary human alveolar macrophages and epithelial cells for investigating aerosol medicines. Part I: model characterisation.

      Hittinger, Marius; Janke, Julia; Huwer, Hanno; Scherließ, Regina; Schneider-Daum, Nicole; Lehr, Claus Michael; Helmholtz-Institute for Pharmaceutical Research Saarland,Universitätscampus E8.1, 66123 Saarbrücken, Germany. (2016-09)
      The development of new formulations for pulmonary drug delivery is a challenge on its own. New in vitro models which address the lung are aimed at predicting and optimising the quality, efficacy and safety of inhaled drugs, to facilitate the more rapid translation of such products into the clinic. Reducing the complexity of the in vivo situation requires that such models reproducibly reflect essential physiological factors in vitro. The choice of cell types, culture conditions and the experimental set-up, can affect the outcome and the relevance of a study. In the alveolar space of the lung, epithelial cells and alveolar macrophages are the most important cell types, forming an efficient cellular barrier to aerosols. Our aim was to mimic this barrier with primary human alveolar cells. Cell densities of alveolar macrophages and epithelial cells, isolated from the same human donor, were optimised, with a focus on barrier properties. The combination of 300,000 epithelial cells/cm² together with 100,000 macrophages/cm² showed a functional barrier (transepithelial electrical resistance > 500Ω.cm²). This cell model was combined with the Pharmaceutical Aerosol Deposition Device on Cell Cultures. The functionality of the in vitro system was investigated with spray-dried fluorescently labelled poly(lactic-co-glycolic) acid particles loaded with ovalbumin as a model drug.
    • Autologous co-culture of primary human alveolar macrophages and epithelial cells for investigating aerosol medicines. Part II: evaluation of IL-10-loaded microparticles for the treatment of lung inflammation.

      Hittinger, Marius; Mell, Nico Alexander; Huwer, Hanno; Loretz, Brigitta; Schneider-Daum, Nicole; Lehr, Claus Michael; Helmholtz-Institute for Pharmaceutical Research Saarland,Universitätscampus E8.1, 66123 Saarbrücken, Germany. (2016-09)
      Acute respiratory distress syndrome is linked to inflammatory processes in the human lung. The aim of this study was to mimic in vitro the treatment of lung inflammation by using a cell-based human autologous co-culture model. As a potential trial medication, we developed a pulmonary dry powder formulation loaded with interleukin-10 (IL-10), a potent anti-inflammatory cytokine. The inflammatory immune response was stimulated by lipopolysaccharide. The co-culture was combined with the Pharmaceutical Aerosol Deposition Device on Cell Cultures )PADDOCC), to deposit the IL-10-loaded microparticles on the inflamed co-culture model at the air-liquid interface. This treatment significantly reduced the secretion of interleukin-6 and tumour necrosis factor, as compared to the deposition of placebo (unloaded) particles. Our results show that the alveolar co-culture model, in combination with a deposition device such as the PADDOCC, may serve as a powerful tool for testing the safety and efficacy of dry powder formulations for pulmonary drug delivery.
    • The bacterial cell envelope as delimiter of anti-infective bioavailability - An in vitro permeation model of the Gram-negative bacterial inner membrane.

      Graef, Florian; Vukosavljevic, Branko; Michel, Jean-Philippe; Wirth, Marius; Ries, Oliver; De Rossi, Chiara; Windbergs, Maike; Rosilio, Véronique; Ducho, Christian; Gordon, Sarah; et al. (2016)
      Gram-negative bacteria possess a unique and complex cell envelope, composed of an inner and outer membrane separated by an intermediate cell wall-containing periplasm. This tripartite structure acts intrinsically as a significant biological barrier, often limiting the permeation of anti-infectives, and so preventing such drugs from reaching their target. Furthermore, identification of the specific permeation-limiting envelope component proves difficult in the case of many anti-infectives, due to the challenges associated with isolation of individual cell envelope structures in bacterial culture. The development of an in vitro permeation model of the Gram-negative inner membrane, prepared by repeated coating of physiologically-relevant phospholipids on Transwell®filter inserts, is therefore reported, as a first step in the development of an overall cell envelope model. Characterization and permeability investigations of model compounds as well as anti-infectives confirmed the suitability of the model for quantitative and kinetically-resolved permeability assessment, and additionally confirmed the importance of employing bacteria-specific base materials for more accurate mimicking of the inner membrane lipid composition - both advantages compared to the majority of existing in vitro approaches. Additional incorporation of further elements of the Gram-negative bacterial cell envelope could ultimately facilitate model application as a screening tool in anti-infective drug discovery or formulation development.
    • Barriers and motivations for non-invasive drug delivery.

      Loretz, Brigitta; Schneider-Daum, Nicole; Windbergs, Maike; Schaefer, Ulrich; Schneider, Marc; Lehr, Claus Michael; HIPS, Helmholtz-Institut für pharmazeutische Forschung Saarland, Universitätscampus E8.1,66123 Saarbrücken, Germany. (2017-09)
    • Biodegradable starch derivatives with tunable charge density-synthesis, characterization, and transfection efficiency.

      Thiele, Carolin; Loretz, Brigitta; Lehr, Claus Michael; Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS),Saarland Universitätscampus E8.1, 66123 Saarbrücken, Germany. (2016-10-03)
      Regioselective oxidation of water-soluble starch and conversion with alkyl diamines resulted in defined cationic starch derivatives. Those were assessed in their potential for polyplex formation, biocompatibility, and transfection efficacy. The new polymers have the advantage of being biodegradable, being not cytotoxic at rather high concentrations (LC50 > 400 μg/ml) for C2 substitution, and reach transfection efficiencies comparable to commercial transfection reagents. The polymer with the highest transfection efficacy is a C12 substituted polymer (degree of substitution = 30 %) at N/P 3. The LC50 value of that highly modified polymer is still one order of magnitude lower than that of PEI 25 kDa.
    • Calcifediol-loaded liposomes for local treatment of pulmonary bacterial infections.

      Castoldi, Arianna; Herr, Christian; Niederstraßer, Julia; Labouta, Hagar Ibrahim; Melero, Ana; Gordon, Sarah; Schneider-Daum, Nicole; Bals, Robert; Lehr, Claus Michael; HIPS, Helmholtz-Institut für pharmazeutische Forschung Saarland, Universitätscampus 8.1, 66123 Saarbrücken, Germany. (2017-09)
      The influence of vitamin D3 and its metabolites calcifediol (25(OH)D) and calcitriol on immune regulation and inflammation is well described, and raises the question of potential benefit against bacterial infections. In the current study, 25(OH)D was encapsulated in liposomes to enable aerosolisation, and tested for the ability to prevent pulmonary infection by Pseudomonas aeruginosa. Prepared 25(OH)D-loaded liposomes were nanosized and monodisperse, with a negative surface charge and a 25(OH)D entrapment efficiency of approximately 23%. Jet nebulisation of liposomes was seen to yield an aerosol suitable for tracheo-bronchial deposition. Interestingly, 25(OH)D in either liposomes or ethanolic solution had no effect on the release of the proinflammatory cytokine KC from Pseudomonas-infected murine epithelial cells (LA-4); treatment of infected, human bronchial 16-HBE cells with 25(OH)D liposomes however resulted in a significant reduction in bacterial survival. Together with the importance of selecting an application-appropriate in vitro model, the current study illustrates the feasibility and practicality of employing liposomes as a means to achieve 25(OH)D lung deposition. 25(OH)D-loaded liposomes further demonstrated promising effects regarding prevention of Pseudomonas infection in human bronchial epithelial cells.
    • Capturing the Onset of Bacterial Pulmonary Infection in Acini-On-Chips

      Artzy-Schnirman, Arbel; Zidan, Hikaia; Elias-Kirma, Shani; Ben-Porat, Lee; Tenenbaum-Katan, Janna; Carius, Patrick; Fishler, Ramy; Schneider-Daum, Nicole; Lehr, Claus Michael; Sznitman, Josué (Wiley-VCH, 2019-09-01)
    • Dissolution techniques for in vitro testing of dry powders for inhalation.

      May, Sabine; Jensen, Birte; Wolkenhauer, Markus; Schneider, Marc; Lehr, Claus Michael; PharmBioTec GmbH, Saarbrücken, Germany. (2012-08)
      To evaluate different dissolution testing methods and subsequently develop a simple to perform but reproducible and discriminating dissolution technique for inhalative powders.
    • Expression and Activity of Breast Cancer Resistance Protein (BCRP/ABCG2) in Human Distal Lung Epithelial Cells In Vitro.

      Nickel, Sabrina; Selo, Mohammed Ali; Fallack, Juliane; Clerkin, Caoimhe G; Huwer, Hanno; Schneider-Daum, Nicole; Lehr, Claus Michael; Ehrhardt, Carsten; Helmholtz Institut für Pharmaceutischr Forschung Saarland, Universitätscampus E8.1, 66123 Saarbrücken, Germany. (2017-05-03)
      Breast cancer resistance protein (BCRP/ABCG2) has previously been identified with high expression levels in human lung. The subcellular localisation and functional activity of the transporter in lung epithelia, however, remains poorly investigated. The aim of this project was to study BCRP expression and activity in freshly isolated human alveolar epithelial type 2 (AT2) and type 1-like (AT1-like) cells in primary culture, and to compare these findings with data obtained from the NCI-H441 cell line.
    • Human alveolar epithelial cells expressing tight junctions to model the air-blood barrier.

      Kuehn, Anna; Kletting, Stephanie; de Souza Carvalho-Wodarz, Cristiane; Repnik, Urska; Griffiths, Gareth; Fischer, Ulrike; Meese, Eckart; Huwer, Hanno; Wirth, Dagmar; May, Tobias; et al. (2016-03-17)
      This paper describes a new human alveolar epithelial cell line (hAELVi - human Alveolar Epithelial Lentivirus immortalized) with type I-like characteristics and functional tight junctions, suitable to model the air-blood barrier of the peripheral lung. Primary human alveolar epithelial cells were immortalized by a novel regimen, grown as monolayers on permeable filter supports and characterized morphologically, biochemically and biophysically. hAELVi cells maintain the capacity to form tight intercellular junctions, with high trans-epithelial electrical resistance (> 1000 Ω*cm²). The cells could be kept in culture over several days, up to passage 75, under liquid-liquid as well as air-liquid conditions. Ultrastructural analysis and real time PCR revealed type I-like cell properties, such as the presence of caveolae, expression of caveolin-1, and absence of surfactant protein C. Accounting for the barrier properties, inter-digitations sealed with tight junctions and desmosomes were also observed. Low permeability of the hydrophilic marker sodium fluorescein confirmed the suitability of hAELVi cells for in vitro transport studies across the alveolar epithelium. These results suggest that hAELVi cells reflect the essential features of the air-blood barrier, as needed for an alternative to animal testing to study absorption and toxicity of inhaled drugs, chemicals and nanomaterials.
    • Mastering the Gram-negative bacterial barrier - Chemical approaches to increase bacterial bioavailability of antibiotics.

      Ropponen, Henni-Karoliina; Richter, Robert; Hirsch, Anna K H; Lehr, Claus Michael; HIPS, Helmholtz-Institut für Pharmazeutische Forschung Saarland, Universitätscampus E8.1 66123 Saarbrücken, Germany. (Elsevier, 2021-03-08)
      To win the battle against resistant, pathogenic bacteria, novel classes of anti-infectives and targets are urgently needed. Bacterial uptake, distribution, metabolic and efflux pathways of antibiotics in Gram-negative bacteria determine what we here refer to as bacterial bioavailability. Understanding these mechanisms from a chemical perspective is essential for anti-infective activity and hence, drug discovery as well as drug delivery. A systematic and critical discussion of in bacterio, in vitro and in silico assays reveals that a sufficiently accurate holistic approach is still missing. We expect new findings based on Gram-negative bacterial bioavailability to guide future anti-infective research.
    • A miRNA181a/NFAT5 axis links impaired T cell tolerance induction with autoimmune type 1 diabetes.

      Serr, Isabelle; Scherm, Martin G; Zahm, Adam M; Schug, Jonathan; Flynn, Victoria K; Hippich, Markus; Kälin, Stefanie; Becker, Maike; Achenbach, Peter; Nikolaev, Alexei; et al. (2018-01-03)
      Molecular checkpoints that trigger the onset of islet autoimmunity or progression to human type 1 diabetes (T1D) are incompletely understood. Using T cells from children at an early stage of islet autoimmunity without clinical T1D, we find that a microRNA181a (miRNA181a)-mediated increase in signal strength of stimulation and costimulation links nuclear factor of activated T cells 5 (NFAT5) with impaired tolerance induction and autoimmune activation. We show that enhancing miRNA181a activity increases NFAT5 expression while inhibiting FOXP3+regulatory T cell (Treg) induction in vitro. Accordingly, Treginduction is improved using T cells from NFAT5 knockout (NFAT5ko) animals, whereas altering miRNA181a activity does not affect Treginduction in NFAT5ko T cells. Moreover, high costimulatory signals result in phosphoinositide 3-kinase (PI3K)-mediated NFAT5, which interferes with FoxP3+Treginduction. Blocking miRNA181a or NFAT5 increases Treginduction in murine and humanized models and reduces murine islet autoimmunity in vivo. These findings suggest targeting miRNA181a and/or NFAT5 signaling for the development of innovative personalized medicines to limit islet autoimmunity.
    • miRNA92a targets KLF2 and the phosphatase PTEN signaling to promote human T follicular helper precursors in T1D islet autoimmunity.

      Serr, Isabelle; Fürst, Rainer W; Ott, Verena B; Scherm, Martin G; Nikolaev, Alexei; Gökmen, Füsun; Kälin, Stefanie; Zillmer, Stephanie; Bunk, Melanie; Weigmann, Benno; et al. (2016)
      Aberrant immune activation mediated by T effector cell populations is pivotal in the onset of autoimmunity in type 1 diabetes (T1D). T follicular helper (TFH) cells are essential in the induction of high-affinity antibodies, and their precursor memory compartment circulates in the blood. The role of TFH precursors in the onset of islet autoimmunity and signaling pathways regulating their differentiation is incompletely understood. Here, we provide direct evidence that during onset of islet autoimmunity, the insulin-specific target T-cell population is enriched with a C-X-C chemokine receptor type 5 (CXCR5)+CD4+ TFH precursor phenotype. During onset of islet autoimmunity, the frequency of TFH precursors was controlled by high expression of microRNA92a (miRNA92a). miRNA92a-mediated TFH precursor induction was regulated by phosphatase and tension homolog (PTEN) - phosphoinositol-3-kinase (PI3K) signaling involving PTEN and forkhead box protein O1 (Foxo1), supporting autoantibody generation and triggering the onset of islet autoimmunity. Moreover, we identify Krueppel-like factor 2 (KLF2) as a target of miRNA92a in regulating human TFH precursor induction. Importantly, a miRNA92a antagomir completely blocked induction of human TFH precursors in vitro. More importantly, in vivo application of a miRNA92a antagomir to nonobese diabetic (NOD) mice with ongoing islet autoimmunity resulted in a significant reduction of TFH precursors in peripheral blood and pancreatic lymph nodes. Moreover, miRNA92a antagomir application reduced immune infiltration and activation in pancreata of NOD mice as well as humanized NOD Scid IL2 receptor gamma chain knockout (NSG) human leucocyte antigen (HLA)-DQ8 transgenic animals. We therefore propose that miRNA92a and the PTEN-PI3K-KLF2 signaling network could function as targets for innovative precision medicines to reduce T1D islet autoimmunity.
    • Nanoencapsulation of a glucocorticoid improves barrier function and anti-inflammatory effect on monolayers of pulmonary epithelial cell lines.

      Rigo, Lucas A; Carvalho-Wodarz, Cristiane S; Pohlmann, Adriana R; Guterres, Silvia S; Schneider-Daum, Nicole; Lehr, Claus Michael; Beck, Ruy C R; Helmholtz-Institut für Pharmazeutische Forschung Saarland [HIPS], Universitätscampus E8.1, 66123 Saarbrücken, Germany. (2017-05-13)
      The anti-inflammatory effect of polymeric deflazacort nanocapsules (NC-DFZ) was investigated, and possible improvement of epithelial barrier function using filter grown monolayers of A549 and Calu-3 using as models was assessed. NC prepared from poly(ε-caprolactone) (PCL) had a mean size around 200 nm, slightly negative zeta potential (∼ - 8 mV), and low polydispersity index (< 0.10). Encapsulation of DFZ had an efficiency of 85%. No cytotoxic effects were observed at particle concentration of 9.85 x 10(11) NC/ml, which was therefore chosen to evaluate the effect of NC-DFZ at 1% (w/v) of PCL and 0.5% (w/v) of DFZ on the epithelial barrier function of Calu-3 monolayers. Nanoencapsulated drug at 0.5% (w/v) increased transepithelial electrical resistance and decrease permeability of the paracellular marker sodium fluorescein, while non-encapsulated DFZ failed to improve these parameters. Moreover, NC-DFZ reduced the lipopolysaccharide (LPS) mediated secretion of the inflammatory marker IL-8. In vitro dissolution testing revealed controlled release of DFZ from nanocapsules, which may explain the improved effect of DFZ on the cells. These data suggest that nanoencapsulation of pulmonary delivered corticosteroids could be advantageous for the treatment of inflammatory conditions, such as asthma and chronic obstructive pulmonary diseases.
    • Novel anti-ulcer phytosomal formulation of ethanol extract of pentaclethra macrophylla stem-bark

      Nnamani, Petra O.; Kenechukwu, Franklin C.; Asogwa, Francis O.; Momoh, Mumuni A.; Lehr, Claus Michael; Attama, Anthony A.; HIPS, Helmholtz-Institut für Pharmazeutische Forschung Saarland, Universitätscampus E8.1 66123 Saarbrücken, Germany. (, Faculty of Pharmacy, University of Benin, Benin City, Nigeria., 2020-01-01)
      Pentaclethra macrophylla, a medicinal plant widely used for ulcer treatment in Nigeria by herbal practitioners, is limited by poor lipid solubility, resulting in poor absorption and bioavailability. Phytosomes, a novel dosage form that are better absorbed and produce better results than conventional herbal extracts, could be employed to enhance its antiulcer activity. The objective of this study was to formulate Pentaclethra macrophylla stem-bark extract as phytosomes by forming complexes with phospholipid and compare the antiulcer activity with omeprazole, a standard anti-ulcer drug. Phytosomal formulations of ethanol extract of Pentaclethra macrophylla stem-bark and Phospholipon® 90G (P90G) (extract:P90G ratios of 1:1, 1:3, 1:5) were prepared following established method. Their physicochemical properties, in vitro drug release in simulated intestinal fluid (SIF, pH=7.4) and simulated gastric fluid (SGF, pH=1.2) and anti-ulcer properties on aspirin-induced ulcer using Wistar rats were determined and compared with omeprazole. Phytosomes with spherical smooth particles with size range 0.106-0.217 µm and good encapsulation efficiencies (range = 67.61-72.8%) were obtained. Drug release increased with time irrespective of phospholipid concentration or dissolution medium. The extract possessed antiulcer activity (23.33%) which was increased to 33.33, 43.33 and 56.67% by formulating it as phytosomal formulations containing extract:P90G ratios of 1:1, 1:3, 1:5, respectively. However, omeprazole and its formulations gave significantly (p<0.05) greater antiulcer activity when compared with both the ethanol extract and phytosomes. Pentaclethra macrophylla stem-bark possessed antiulcer activity, which was improved via phytosomal formulation. This would serve as potential safer and cheaper alternative therapeutics for ulcer given the side-effects associated with omeprazole.
    • OCTN2-mediated acetyl-l-carnitine transport in human pulmonary epithelial cells in vitro

      Salomon, Johanna J.; Gausterer, Julia C.; Selo, Mohammed Ali; Hosoya, Ken Ichi; Huwer, Hanno; Schneider-Daum, Nicole; Lehr, Claus Michael; Ehrhardt, Carsten; HIPS, Helmholtz-Institut für Pharmazeutische Forschung Saarland, Universitätscampus E8.1 66123 Saarbrücken, Germany. (MPDI, 2019-08-01)
      The carnitine transporter OCTN2 is associated with asthma and other inflammatory diseases. The aims of this work were (i) to determine carnitine uptake into freshly isolated human alveolar type I (ATI)-like epithelial cells in primary culture, (ii) to compare the kinetics of carnitine uptake between respiratory epithelial in vitro cell models, and (iii) to establish whether any cell line was a suitable model for studies of carnitine transport at the air-blood barrier. Levels of time-dependent [3H]-acetyl-l-carnitine uptake were similar in ATI-like, NCl-H441, and Calu-3 epithelial cells, whereas uptake into A549 cells was ~5 times higher. Uptake inhibition was more pronounced by OCTN2 modulators, such as l-Carnitine and verapamil, in ATI-like primary epithelial cells compared to NCl-H441 and Calu-3 epithelial cells. Our findings suggest that OCTN2 is involved in the cellular uptake of acetyl-l-carnitine at the alveolar epithelium and that none of the tested cell lines are optimal surrogates for primary cells.
    • Safety assessment of excipients (SAFE) for orally inhaled drug products.

      Metz, Julia K; Scharnowske, Lara; Hans, Fabian; Schnur, Sabrina; Knoth, Katharina; Zimmer, Horst; Limberger, Markus; Groß, Henrik; Lehr, Claus Michael; Hittinger, Marius; et al. (Springer, 2020-01-29)
      The development of new orally inhaled drug products requires the demonstration of safety which must be proven in animal experiments. New in vitro methods may replace, or at least reduce, these animal experiments provided they are able to correctly predict the safety or eventual toxicity in humans. However, the challenge is to link human in vitro data to human in vivo data. We here present a new approach to the safety assessment of excipients (SAFE) for pulmonary drug delivery. The SAFE model is based on a dose response curve of 23 excipients tested on the human pulmonary epithelial cell lines A549 and Calu-3. The resulting in vitro IC50 values were correlated with the FDA-approved concentration in pharmaceutical products for either pulmonary (if available) or parenteral administration. Setting a threshold of 0.1% (1 mg/mL) for either value yielded four safety classes, allowed to link IC50 data as measured on human cell cultures in vitro with the concentrations of the same compounds in FDA-approved drug products. The necessary in vitro data for novel excipients can be easily generated while the SAFE approach allows putting them in the context for eventual use in human pulmonary drug products. Excipients, that are most likely not safe for use in humans, can be early excluded from further pharmaceutical development. The SAFE approach helps thus to avoid unnecessary animal experiments.
    • Spray-dried lactose-leucine microparticles for pulmonary delivery of antimycobacterial nanopharmaceuticals.

      Thiyagarajan, Durairaj; Huck, Benedikt; Nothdurft, Birgit; Koch, Marcus; Rudolph, David; Rutschmann, Mark; Feldmann, Claus; Hozsa, Constantin; Furch, Marcus; Besecke, Karen F W; et al. (2021-06-08)
    • Starch-Chitosan Polyplexes: A Versatile Carrier System for Anti-Infectives and Gene Delivery

      Yasar, Hanzey; Ho, Duy-Khiet; De Rossi, Chiara; Herrmann, Jennifer; Gordon, Sarah; Loretz, Brigitta; Lehr, Claus Michael; HIPS, Helmholtz-Institut für pharmazeutische Forschung Saarland, Universitätscampus 8.1, 66123 Saarbrücken, Germany. (2018-03-01)