• Semi-automated nanoprecipitation-system--an option for operator independent, scalable and size adjustable nanoparticle synthesis.

      Rietscher, René; Thum, Carolin; Lehr, Claus-Michael; Schneider, Marc; Helmholtz Institute for Pharmaceutical Research Saarland (HIPS);Saarland University, Building A4.1, 66123 Saarbruecken, Germany. (2015-06)
      The preparation of nano-sized carrier systems increasingly moved into focus of pharmaceutical research and industry in the past decades. Besides the drug load and properties of the selected polymer/lipid, the size of such particles is one of the most important parameters regarding their use as efficient drug delivery systems. However, the preparation of nanoparticles with different sizes in a controlled manner is challenging, especially in terms of reproducibility and scale-up possibility. To overcome these hurdles we developed a system relying on nanoprecipitation, which meets all these requirements of an operator independent, scalable and size-adjustable nanoparticle synthesis-the Semi-Automated Nanoprecipitation-System. This system enables the adaption of the particle size to specific needs based on the process parameters-injection rate, flow rate and polymer concentration-identified within this study. The basic set-up is composed of a syringe pump and a gear pump for a precise control of the flow and injection speed of the system. Furthermore, a home-made tube-straightener guarantees a curvature-free injection point. Thus it could be shown that the production of poly(lactide-co-glycolide) nanoparticles from 150 to 600 nm with a narrow size distribution in a controlled semi-automatic manner is possible.