• Towards the sustainable discovery and development of new antibiotics.

      Miethke, Marcus; Pieroni, Marco; Weber, Tilmann; Brönstrup, Mark; Hammann, Peter; Halby, Ludovic; Arimondo, Paola B; Glaser, Philippe; Aigle, Bertrand; Bode, Helge B; et al. (Springer Nature, 2021-08-19)
      An ever-increasing demand for novel antimicrobials to treat life-threatening infections caused by the global spread of multidrug-resistant bacterial pathogens stands in stark contrast to the current level of investment in their development, particularly in the fields of natural-product-derived and synthetic small molecules. New agents displaying innovative chemistry and modes of action are desperately needed worldwide to tackle the public health menace posed by antimicrobial resistance. Here, our consortium presents a strategic blueprint to substantially improve our ability to discover and develop new antibiotics. We propose both short-term and long-term solutions to overcome the most urgent limitations in the various sectors of research and funding, aiming to bridge the gap between academic, industrial and political stakeholders, and to unite interdisciplinary expertise in order to efficiently fuel the translational pipeline for the benefit of future generations.
    • A Custom-Made Device for Reproducibly Depositing Pre-metered Doses of Nebulized Drugs on Pulmonary Cells .

      Horstmann, Justus C; Thorn, Chelsea R; Carius, Patrick; Graef, Florian; Murgia, Xabier; de Souza Carvalho-Wodarz, Cristiane; Lehr, Claus-Michael; HIPS, Helmholtz-Institut für Pharmazeutische Forschung Saarland, Universitätscampus E8.1 66123 Saarbrücken, Germany. (Frontiers, 2021-04-21)
      The deposition of pre-metered doses (i.e., defined before and not after exposition) at the air-liquid interface of viable pulmonary epithelial cells remains an important but challenging task for developing aerosol medicines. While some devices allow quantification of the deposited dose after or during the experiment, e.g., gravimetrically, there is still no generally accepted way to deposit small pre-metered doses of aerosolized drugs or pharmaceutical formulations, e.g., nanomedicines. Here, we describe a straightforward custom-made device, allowing connection to commercially available nebulizers with standard cell culture plates. Designed to tightly fit into the approximately 12-mm opening of either a 12-well Transwell® insert or a single 24-well plate, a defined dose of an aerosolized liquid can be directly deposited precisely and reproducibly (4.8% deviation) at the air-liquid interface (ALI) of pulmonary cell cultures. The deposited dose can be controlled by the volume of the nebulized solution, which may vary in a range from 20 to 200 μl. The entire nebulization-deposition maneuver is completed after 30 s and is spatially homogenous. After phosphate-buffered saline (PBS) deposition, the viability and barrier properties transepithelial electrical resistance (TEER) of human bronchial epithelial Calu-3 cells were not negatively affected. Straightforward in manufacture and use, the device enables reproducible deposition of metered doses of aerosolized drugs to study the interactions with pulmonary cell cultures grown at ALI conditions.
    • Drug delivery for fighting infectious diseases: a global perspective.

      Loretz, Brigitta; Oh, Yu-Kyoung; Hudson, Sarah; Gu, Zhen; Lehr, Claus-Michael; HIPS, Helmholtz-Institut für Pharmazeutische Forschung Saarland, Universitätscampus E8.1 66123 Saarbrücken, Germany. (SPringer, 2021-06-09)
      [No abstract available]
    • Towards More Predictive, Physiological and Animal-free in vitro Models: Advances in Cell and Tissue Culture 2020 Conference Proceedings.

      Singh, Bhumika; Abdelgawad, Mohamed Essameldin; Ali, Zulfiqur; Bailey, Jarrod; Budyn, Elisa; Civita, Prospero; Clift, Martin J D; Connelly, John T; Constant, Samuel; Hittinger, Marius; et al. (Fund for the Replacement of Animals in Medical Experiments (FRAME), 2021-07-06)
      Experimental systems that faithfully replicate human physiology at cellular, tissue and organ level are crucial to the development of efficacious and safe therapies with high success rates and low cost. The development of such systems is challenging and requires skills, expertise and inputs from a diverse range of experts, such as biologists, physicists, engineers, clinicians and regulatory bodies. Kirkstall Limited, a biotechnology company based in York, UK, organised the annual conference, Advances in Cell and Tissue Culture (ACTC), which brought together people having a variety of expertise and interests, to present and discuss the latest developments in the field of cell and tissue culture and in vitro modelling. The conference has also been influential in engaging animal welfare organisations in the promotion of research, collaborative projects and funding opportunities. This report describes the proceedings of the latest ACTC conference, which was held virtually on 30th September and 1st October 2020, and included sessions on in vitro models in the following areas: advanced skin and respiratory models, neurological disease, cancer research, advanced models including 3-D, fluid flow and co-cultures, diabetes and other age-related disorders, and animal-free research. The roundtable session on the second day was very interactive and drew huge interest, with intriguing discussion taking place among all participants on the theme of replacement of animal models of disease.
    • Mastering the Gram-negative bacterial barrier - Chemical approaches to increase bacterial bioavailability of antibiotics.

      Ropponen, Henni-Karoliina; Richter, Robert; Hirsch, Anna K H; Lehr, Claus Michael; HIPS, Helmholtz-Institut für Pharmazeutische Forschung Saarland, Universitätscampus E8.1 66123 Saarbrücken, Germany. (Elsevier, 2021-03-08)
      To win the battle against resistant, pathogenic bacteria, novel classes of anti-infectives and targets are urgently needed. Bacterial uptake, distribution, metabolic and efflux pathways of antibiotics in Gram-negative bacteria determine what we here refer to as bacterial bioavailability. Understanding these mechanisms from a chemical perspective is essential for anti-infective activity and hence, drug discovery as well as drug delivery. A systematic and critical discussion of in bacterio, in vitro and in silico assays reveals that a sufficiently accurate holistic approach is still missing. We expect new findings based on Gram-negative bacterial bioavailability to guide future anti-infective research.
    • Tobramycin Liquid Crystal Nanoparticles Eradicate Cystic Fibrosis-Related Pseudomonas aeruginosa Biofilms.

      Thorn, Chelsea R; Carvalho-Wodarz, Cristiane de Souza; Horstmann, Justus C; Lehr, Claus-Michael; Prestidge, Clive A; Thomas, Nicky; HIPS, Helmholtz-Institut für Pharmazeutische Forschung Saarland, Universitätscampus E8.1 66123 Saarbrücken, Germany. (Wiley-VCH, 2021-05-12)
      Pseudomonas aeruginosa biofilms cause persistent and chronic infections, most known clinically in cystic fibrosis (CF). Tobramycin (TOB) is a standard anti-pseudomonal antibiotic; however, in biofilm infections, its efficacy severely decreases due to limited permeability across the biofilm matrix. Herewith, a biomimetic, nanostructured, lipid liquid crystal nanoparticle-(LCNP)-formulation is discovered to significantly enhance the efficacy of TOB and eradicate P. aeruginosa biofilm infections. Using an advanced, biologically-relevant co-culture model of human CF bronchial epithelial cells infected with P. aeruginosa biofilms at an air-liquid interface, nebulized TOB-LCNPs completely eradicated 1 × 109 CFU mL-1 of P. aeruginosa after two doses, a 100-fold improvement over the unformulated antibiotic. The enhanced activity of TOB is not observed with a liposomal formulation of TOB or with ciprofloxacin, an antibiotic that readily penetrates biofilms. It is demonstrated that the unique nanostructure of the LCNPs drives the enhanced penetration of TOB across the biofilm barrier, but not through the healthy lung epithelium barrier, significantly increasing the available antibiotic concentration at the site of infection. The LCNPs are an innovative strategy to improve the performance of TOB as a directed pulmonary therapy, enabling the administration of lower doses, reducing the toxicity, and amplifying the anti-biofilm activity of the anti-pseudomonal antibiotic.
    • Spray-dried lactose-leucine microparticles for pulmonary delivery of antimycobacterial nanopharmaceuticals.

      Thiyagarajan, Durairaj; Huck, Benedikt; Nothdurft, Birgit; Koch, Marcus; Rudolph, David; Rutschmann, Mark; Feldmann, Claus; Hozsa, Constantin; Furch, Marcus; Besecke, Karen F W; et al. (2021-06-08)
    • Fucosylated lipid nanocarriers loaded with antibiotics efficiently inhibit mycobacterial propagation in human myeloid cells.

      Durán, Verónica; Grabski, Elena; Hozsa, Constantin; Becker, Jennifer; Yasar, Hanzey; Monteiro, João T; Costa, Bibiana; Koller, Nicole; Lueder, Yvonne; Wiegmann, Bettina; et al. (Elsevier, 2021-04-16)
      Antibiotic treatment of tuberculosis (TB) is complex, lengthy, and can be associated with various adverse effects. As a result, patient compliance often is poor, thus further enhancing the risk of selecting multi-drug resistant bacteria. Macrophage mannose receptor (MMR)-positive alveolar macrophages (AM) constitute a niche in which Mycobacterium tuberculosis replicates and survives. Therefore, we encapsulated levofloxacin in lipid nanocarriers functionalized with fucosyl residues that interact with the MMR. Indeed, such nanocarriers preferentially targeted MMR-positive myeloid cells, and in particular, AM. Intracellularly, fucosylated lipid nanocarriers favorably delivered their payload into endosomal compartments, where mycobacteria reside. In an in vitro setting using infected human primary macrophages as well as dendritic cells, the encapsulated antibiotic cleared the pathogen more efficiently than free levofloxacin. In conclusion, our results point towards carbohydrate-functionalized nanocarriers as a promising tool for improving TB treatment by targeted delivery of antibiotics.
    • Development and evaluation of a quality control system based on transdermal electrical resistance for skin barrier function in vitro.

      Knoth, Katharina; Zäh, Ralf-Kilian; Veldung, Barbara; Burgio, Dominic; Wiegand, Birgit; Smola, Hans; Bock, Udo; Lehr, Claus-Michael; Hittinger, Marius; Groß, Henrik; et al. (Wiley & Sons, 2021-01-06)
      Background: In vitro skin permeation experiments are highly relevant for pharmaceutical, cosmetic, agricultural developments, and regulatory evaluation. A key requirement is the skin barrier integrity, that is accompanied by an intact stratum corneum (SC) which implements high skin quality. A variety of integrity tests are currently available, for example, measurement of transepidermal water loss, monitoring the permeation of tritiated water and the measurement of transdermal electrical resistance (TER). Materials and methods: We aimed for a non-destructive examination of barrier integrity as quality control system, based on TER. Therefore, the in-house developed instrument SkinTER measures electrical resistance on excised human skin samples in a non-invasive and easy-to-use pattern. In this proof of concept study, we compared three human in vitro skin models with focus on their TER and permeation properties. The skin integrity was impaired to mimic conditions of skin during age, lifestyle (eg, shaving) or diseases (eg, obesity, psoriasis, and atopic dermatitis). The OECD permeation marker caffeine was correlated to the corresponding TER value. Results: A correlation between both was obtained by having a Pearson coefficient of -0.830. Hereby, a minimum TER value for intact skin samples of ~1.77 kΩ*cm2 was suggested. Intact samples are significantly different (α = ≤0.05) to their impaired counterparts in flux and TER values. Conclusion: The new SkinTER instrument gives a quick and non-invasive feedback on skin quality before a permeation experiment.
    • Formulation and evaluation of transdermal nanogel for delivery of artemether.

      Nnamani, Petra O; Ugwu, Agatha A; Nnadi, Ogechukwu H; Kenechukwu, Franklin C; Ofokansi, Kenneth C; Attama, Anthony A; Lehr, Claus-Michael; HIPS, Helmholtz-Institut für Pharmazeutische Forschung Saarland, Universitätscampus E8.1 66123 Saarbrücken, Germany. (Springer, 2021-03-19)
      rtemether (ART) is second to artesunate in being the most widely used derivatives of artemisinin in combination therapy of malaria. Nanostructured lipid carrier (NLC) formulations were prepared following our previous report using optimized ART concentration of 0.25 g dissolved in 5% w/v mixture of solid (Gelucire 43/01 and Phospholipon 85G) and liquid (Transcutol) lipids at 90 °C. An aqueous surfactant phase at 90 °C was added (dropwise) under magnetic stirring (1000 rpm) for 5 min. The pre-emulsion was speedily homogenized at 28,000 rpm for 15 min and further probe sonicated at 60% amplitude (15 min). Resultant sample was cooled at room temperature and frozen at - 80 °C prior to lyophilization. The freeze-dried sample was used for solid-state characterization as well as in the formulation of transdermal nanogels using three polymers (Carbopol 971P, Poloxamer 407, and Prosopis africana peel powder) to embed the ART-NLC, using ethanol as a penetration enhancer. Transdermal ART-nanogels were characterized accordingly (physical examination, pH, drug content, rheology, spreadability, stability, particle size and morphology, skin irritation, in vitro and ex vivo skin permeation, and analysis of permeation data), P < 0.05. Results indicated that ART nanogels showed good encapsulation, drug release, pH-dependent swelling, stability, and tolerability. Overall, ART nanogels prepared from Poloxamer 407 showed the most desirable drug permeation, pH, swellability, spreadability, viscosity, and transdermal antiplasmodial properties superior to PAPP-ANG > C971P-ANG. A two-patch/week concurrent application of the studied nanogels could offer 100% cure of malaria as a lower-dose (50 mg ART) patient-friendly regimen devoid of the drug's many side effects.
    • Extracellular vesicles as antigen carriers for novel vaccination avenues.

      Mehanny, Mina; Lehr, Claus-Michael; Fuhrmann, Gregor; HIPS, Helmholtz-Institut für Pharmazeutische Forschung Saarland, Universitätscampus E8.1 66123 Saarbrücken, Germany. (Elsevier, 2021-03-26)
      Antigen delivery has always been a challenge in scientific practice of vaccine formulation. Yet, mammalian extracellular vesicles (EVs) or bacterial membrane vesicles (MVs) provide an innovative avenue for safe and effective delivery of antigenic material. They include intrinsically loaded antigens from EV-secreting cells or extrinsically loaded antigens onto pre-formed vesicles. Interestingly, many studies shed light on potential novel anti-cancer vaccination immunotherapy for therapeutic applications from mammalian cell host-derived EVs, as well as conventional vaccination for prophylactic applications using bacterial cell-derived MVs against infectious diseases. Here, we discuss the rationale, status quo and potential for both vaccine applications using EVs.
    • A New PqsR Inverse Agonist Potentiates Tobramycin Efficacy to Eradicate Pseudomonas aeruginosa Biofilms

      Schütz, Christian; Ho, Duy‐Khiet; Hamed, Mostafa Mohamed; Abdelsamie, Ahmed Saad; Röhrig, Teresa; Herr, Christian; Kany, Andreas Martin; Rox, Katharina; Schmelz, Stefan; Siebenbürger, Lorenz; et al. (Wiley and Sons Inc., 2021-03-18)
      Pseudomonas aeruginosa (PA) infections can be notoriously difficult to treat and are often accompanied by the development of antimicrobial resistance (AMR). Quorum sensing inhibitors (QSI) acting on PqsR (MvfR) – a crucial transcriptional regulator serving major functions in PA virulence – can enhance antibiotic efficacy and eventually prevent the AMR. An integrated drug discovery campaign including design, medicinal chemistry‐driven hit‐to‐lead optimization and in‐depth biological profiling of a new QSI generation is reported. The QSI possess excellent activity in inhibiting pyocyanin production and PqsR reporter‐gene with IC50 values as low as 200 and 11 × 10−9 m, respectively. Drug metabolism and pharmacokinetics (DMPK) as well as safety pharmacology studies especially highlight the promising translational properties of the lead QSI for pulmonary applications. Moreover, target engagement of the lead QSI is shown in a PA mucoid lung infection mouse model. Beyond that, a significant synergistic effect of a QSI‐tobramycin (Tob) combination against PA biofilms using a tailor‐made squalene‐derived nanoparticle (NP) formulation, which enhance the minimum biofilm eradicating concentration (MBEC) of Tob more than 32‐fold is demonstrated. The novel lead QSI and the accompanying NP formulation highlight the potential of adjunctive pathoblocker‐mediated therapy against PA infections opening up avenues for preclinical development.
    • Local pulmonary drug delivery in the preterm rabbit: feasibility and efficacy of daily intratracheal injections.

      Salaets, Thomas; Gie, André; Jimenez, Julio; Aertgeerts, Margo; Gheysens, Olivier; Vande Velde, Greetje; Koole, Michel; Murgia, Xabi; Casiraghi, Costanza; Ricci, Francesca; et al. (American Physiological Society, 2019-01-24)
      Recent clinical trials in newborns have successfully used surfactant as a drug carrier for an active compound, to minimize systemic exposure. To investigate the translational potential of surfactant-compound mixtures and other local therapeutics, a relevant animal model is required in which intratracheal administration for maximal local deposition is technically possible and well tolerated. Preterm rabbit pups (born at 28 days of gestation) were exposed to either hyperoxia or normoxia and randomized to receive daily intratracheal surfactant, daily intratracheal saline, or no injections for 7 days. At day 7, the overall lung function and morphology were assessed. Efficacy in terms of distribution was assessed by micro-PET-CT on both day 0 and day 7. Lung function as well as parenchymal and vascular structure were altered by hyperoxia, thereby reproducing a phenotype reminiscent of bronchopulmonary dysplasia (BPD). Neither intratracheal surfactant nor saline affected the survival or the hyperoxia-induced BPD phenotype of the pups. Using PET-CT, we demonstrate that 82.5% of the injected radioactive tracer goes and remains in the lungs, with a decrease of only 4% after 150 min. Surfactant and saline can safely and effectively be administered in spontaneously breathing preterm rabbits. The described model and method enable researchers to evaluate intratracheal pharmacological interventions for the treatment of BPD.
    • Tofacitinib Loaded Squalenyl Nanoparticles for Targeted Follicular Delivery in Inflammatory Skin Diseases.

      Christmann, Rebekka; Ho, Duy-Khiet; Wilzopolski, Jenny; Lee, Sangeun; Koch, Marcus; Loretz, Brigitta; Vogt, Thomas; Bäumer, Wolfgang; Schaefer, Ulrich F; Lehr, Claus-Michael; et al. (MDPI, 2020-11-24)
      Tofacitinib (TFB), a Janus kinase inhibitor, has shown excellent success off-label in treating various dermatological diseases, especially alopecia areata (AA). However, TFB's safe and targeted delivery into hair follicles (HFs) is highly desirable due to its systemic adverse effects. Nanoparticles (NPs) can enhance targeted follicular drug delivery and minimize interfollicular permeation and thereby reduce systemic drug exposure. In this study, we report a facile method to assemble the stable and uniform 240 nm TFB loaded squalenyl derivative (SqD) nanoparticles (TFB SqD NPs) in aqueous solution, which allowed an excellent loading capacity (LC) of 20%. The SqD NPs showed an enhanced TFB delivery into HFs compared to the aqueous formulations of plain drug in an ex vivo pig ear model. Furthermore, the therapeutic efficacy of the TFB SqD NPs was studied in a mouse model of allergic dermatitis by ear swelling reduction and compared to TFB dissolved in a non-aqueous mixture of acetone and DMSO (7:1 v/v). Whereas such formulation would not be acceptable for use in the clinic, the TFB SqD NPs dispersed in water illustrated a better reduction in inflammatory effects than plain TFB's aqueous formulation, implying both encouraging good in vivo efficacy and safety. These findings support the potential of TFB SqD NPs for developing a long-term topical therapy of AA.
    • Novel anti-ulcer phytosomal formulation of ethanol extract of pentaclethra macrophylla stem-bark

      Nnamani, Petra O.; Kenechukwu, Franklin C.; Asogwa, Francis O.; Momoh, Mumuni A.; Lehr, Claus Michael; Attama, Anthony A.; HIPS, Helmholtz-Institut für Pharmazeutische Forschung Saarland, Universitätscampus E8.1 66123 Saarbrücken, Germany. (, Faculty of Pharmacy, University of Benin, Benin City, Nigeria., 2020-01-01)
      Pentaclethra macrophylla, a medicinal plant widely used for ulcer treatment in Nigeria by herbal practitioners, is limited by poor lipid solubility, resulting in poor absorption and bioavailability. Phytosomes, a novel dosage form that are better absorbed and produce better results than conventional herbal extracts, could be employed to enhance its antiulcer activity. The objective of this study was to formulate Pentaclethra macrophylla stem-bark extract as phytosomes by forming complexes with phospholipid and compare the antiulcer activity with omeprazole, a standard anti-ulcer drug. Phytosomal formulations of ethanol extract of Pentaclethra macrophylla stem-bark and Phospholipon® 90G (P90G) (extract:P90G ratios of 1:1, 1:3, 1:5) were prepared following established method. Their physicochemical properties, in vitro drug release in simulated intestinal fluid (SIF, pH=7.4) and simulated gastric fluid (SGF, pH=1.2) and anti-ulcer properties on aspirin-induced ulcer using Wistar rats were determined and compared with omeprazole. Phytosomes with spherical smooth particles with size range 0.106-0.217 µm and good encapsulation efficiencies (range = 67.61-72.8%) were obtained. Drug release increased with time irrespective of phospholipid concentration or dissolution medium. The extract possessed antiulcer activity (23.33%) which was increased to 33.33, 43.33 and 56.67% by formulating it as phytosomal formulations containing extract:P90G ratios of 1:1, 1:3, 1:5, respectively. However, omeprazole and its formulations gave significantly (p<0.05) greater antiulcer activity when compared with both the ethanol extract and phytosomes. Pentaclethra macrophylla stem-bark possessed antiulcer activity, which was improved via phytosomal formulation. This would serve as potential safer and cheaper alternative therapeutics for ulcer given the side-effects associated with omeprazole.
    • Tobacco Smoke and Inhaled Drugs Alter Expression and Activity of Multidrug Resistance-Associated Protein-1 (MRP1) in Human Distal Lung Epithelial Cells .

      Selo, Mohammed Ali; Delmas, Anne-Sophie; Springer, Lisa; Zoufal, Viktoria; Sake, Johannes A; Clerkin, Caoimhe G; Huwer, Hanno; Schneider-Daum, Nicole; Lehr, Claus-Michael; Nickel, Sabrina; et al. (Frontiers, 2020-09-08)
      Multidrug resistance-associated protein-1 (MRP1/ABCC1) is highly expressed in human lung tissues. Recent studies suggest that it significantly affects the pulmonary disposition of its substrates, both after pulmonary and systemic administration. To better understand the molecular mechanisms involved, we studied the expression, subcellular localization and activity of MRP1 in freshly isolated human alveolar epithelial type 2 (AT2) and type 1-like (AT1-like) cells in primary culture, and in the NCI-H441 cell line. Moreover, the effect of cigarette smoke extract (CSE) and a series of inhaled drugs on MRP1 abundance and activity was investigated in vitro. MRP1 expression levels were measured by q-PCR and immunoblot in AT2 and AT1-like cells from different donors and in several passages of the NCI-H441 cell line. The subcellular localization of the transporter was studied by confocal laser scanning microscopy and cell surface protein biotinylation. MRP1 activity was assessed by bidirectional transport and efflux experiments using the MRP1 substrate, 5(6)-carboxyfluorescein [CF; formed intracellularly from 5(6)-carboxyfluorescein-diacetate (CFDA)] in AT1-like and NCI-H441 cell monolayers. Furthermore, the effect of CSE as well as several bronchodilators and inhaled corticosteroids on MRP1 abundance and CF efflux was investigated. MRP1 protein abundance increased upon differentiation from AT2 to AT1-like phenotype, however, ABCC1 gene levels remained unchanged. MRP1 abundance in NCI-H441 cells were comparable to those found in AT1-like cells. The transporter was detected primarily in basolateral membranes of both cell types which was consistent with net basolateral efflux of CF. Likewise, bidirectional transport studies showed net apical-to-basolateral transport of CF which was sensitive to the MRP1 inhibitor MK-571. Budesonide, beclomethasone dipropionate, salbutamol sulfate, and CSE decreased CF efflux in a concentration-dependent manner. Interestingly, CSE increased MRP1 abundance, whereas budesonide, beclomethasone dipropionate, salbutamol sulfate did not have such effect. CSE and inhaled drugs can reduce MRP1 activity in vitro, which implies the transporter being a potential drug target in the treatment of chronic obstructive pulmonary disease (COPD). Moreover, MRP1 expression level, localization and activity were comparable in human AT1-like and NCI-H441 cells. Therefore, the cell line can be a useful alternative in vitro model to study MRP1 in distal lung epithelium.
    • Pulmonary Surfactant and Drug Delivery: An Interface-Assisted Carrier to Deliver Surfactant Protein SP-D Into the Airways.

      García-Mouton, Cristina; Hidalgo, Alberto; Arroyo, Raquel; Echaide, Mercedes; Cruz, Antonio; Pérez-Gil, Jesús; HIPS, Helmholtz-Institut für Pharmazeutische Forschung Saarland, Universitätscampus E8.1 66123 Saarbrücken, Germany. (Frontiers, 2021-01-18)
      This work is focused on the potential use of pulmonary surfactant to deliver full-length recombinant human surfactant protein SP-D (rhSP-D) using the respiratory air-liquid interface as a shuttle. Surfactant protein D (SP-D) is a collectin protein present in the pulmonary surfactant (PS) system, involved in innate immune defense and surfactant homeostasis. It has been recently suggested as a potential therapeutic to alleviate inflammatory responses and lung diseases in preterm infants suffering from respiratory distress syndrome (RDS) or bronchopulmonary dysplasia (BPD). However, none of the current clinical surfactants used for surfactant replacement therapy (SRT) to treat RDS contain SP-D. The interaction of SP-D with surfactant components, the potential of PS as a respiratory drug delivery system and the possibility to produce recombinant versions of human SP-D, brings the possibility of delivering clinical surfactants supplemented with SP-D. Here, we used an in vitro setup that somehow emulates the respiratory air-liquid interface to explore this novel approach. It consists in two different compartments connected with a hydrated paper bridge forming a continuous interface. We firstly analyzed the adsorption and spreading of rhSP-D alone from one compartment to another over the air-liquid interface, observing low interfacial activity. Then, we studied the interfacial spreading of the protein co-administered with PS, both at different time periods or as a mixed formulation, and which oligomeric forms of rhSP-D better traveled associated with PS. The results presented here demonstrated that PS may transport rhSP-D long distances over air-liquid interfaces, either as a mixed formulation or separately in a close window time, opening the doors to empower the current clinical surfactants and SRT.
    • Second-generation lung-on-a-chip with an array of stretchable alveoli made with a biological membrane.

      Zamprogno, Pauline; Wüthrich, Simon; Achenbach, Sven; Thoma, Giuditta; Stucki, Janick D; Hobi, Nina; Schneider-Daum, Nicole; Lehr, Claus-Michael; Huwer, Hanno; Geiser, Thomas; et al. (Nature Pulishing Group, 2021-02-05)
      The air-blood barrier with its complex architecture and dynamic environment is difficult to mimic in vitro. Lung-on-a-chips enable mimicking the breathing movements using a thin, stretchable PDMS membrane. However, they fail to reproduce the characteristic alveoli network as well as the biochemical and physical properties of the alveolar basal membrane. Here, we present a lung-on-a-chip, based on a biological, stretchable and biodegradable membrane made of collagen and elastin, that emulates an array of tiny alveoli with in vivo-like dimensions. This membrane outperforms PDMS in many ways: it does not absorb rhodamine-B, is biodegradable, is created by a simple method, and can easily be tuned to modify its thickness, composition and stiffness. The air-blood barrier is reconstituted using primary lung alveolar epithelial cells from patients and primary lung endothelial cells. Typical alveolar epithelial cell markers are expressed, while the barrier properties are preserved for up to 3 weeks.
    • Modulating the Barrier Function of Human Alveolar Epithelial (hAELVi) Cell Monolayers as a Model of Inflammation.

      Metz, Julia Katharina; Wiegand, Birgit; Schnur, Sabrina; Knoth, Katharina; Schneider-Daum, Nicole; Groß, Henrik; Croston, Glenn; Reinheimer, Torsten Michael; Lehr, Claus-Michael; Hittinger, Marius; et al. (SAGE Publications, 2021-01-29)
      The incidence of inflammatory lung diseases such as acute respiratory distress syndrome (ARDS) remains an important problem, particularly in the present time with the Covid-19 pandemic. However, an adequate in vitro test system to monitor the barrier function of the alveolar epithelium during inflammation and for assessing anti-inflammatory drugs is urgently needed. Therefore, we treated human Alveolar Epithelial Lentivirus-immortalised cells (hAELVi cells) with the pro-inflammatory cytokines TNF-α (25 ng/ml) and IFN-γ (30 ng/ml), in the presence or absence of hydrocortisone (HC). While TNF-α and IFN-γ are known to reduce epithelial barrier properties, HC could be expected to protect the barrier function and result in an anti-inflammatory effect. We investigated the impact of anti-inflammatory/inflammatory treatment on transepithelial electrical resistance (TEER) and the apparent permeability coefficient (P app ) of the low permeability marker sodium fluorescein (NaFlu). After incubating hAELVi cells for 48 hours with a combination of TNF-α and IFN-γ, there was a significant decrease in TEER and a significant increase in the P app . The presence of HC maintained the TEER values and barrier properties, so that no significant P app change was observed. By using hAELVi cells to study anti-inflammatory drugs in vitro, the need for animal experiments could be reduced and pulmonary drug development accelerated.
    • Redispersible Spray-Dried Powder Containing Nanoencapsulated Curcumin: the Drying Process Does Not Affect Neuroprotection In vitro.

      de Andrade, Diego Fontana; Vukosavljevic, Branko; Hoppe, Juliana Bender; Pohlmann, Adriana Raffin; Guterres, Sílvia Stanisçuaski; Windbergs, Maike; Külkamp-Guerreiro, Irene; Salbego, Christianne Gazzana; Beck, Ruy Carlos Ruver; HIPS, Helmholtz-Institut für Pharmazeutische Forschung Saarland, Universitätscampus E8.1 66123 Saarbrücken, Germany.;TWINCORE, Zentrum für experimentelle und klinische Infektionsforschung GmbH,Feodor-Lynen Str. 7, 30625 Hannover, Germany. (Springer, 2019-08-12)
      A redispersible spray-dried formulation containing curcumin-loaded, lipid-core nanocapsules (LNC-C) was developed for oral administration. The neuroprotective activity of curcumin after the spray-drying process was evaluated in vitro. The spray-dried powder (SD-LNC-C) was produced using a drying adjuvant composed of a blend of maltodextrin and L-leucine (90:10 w/w). Acceptable process yield (~ 70%) and drug content (6.5 ± 0.2 mg g-1) were obtained. SD-LNC-C was formed by smooth, spherical-shaped particles, and confocal Raman analysis indicated the distribution of the LNC-C on the surface of the leucine/maltodextrin agglomerates. The surface of the agglomerates was formed by a combination of LNC-C and adjuvants, and laser diffraction showed that SD-LNC-C had adequate aqueous redispersion, with no loss of controlled drug release behaviour of LNC-C. The in vitro curcumin activity against the lipopolysaccharide (LPS)-induced proinflammatory response in organotypic hippocampal slice cultures was evaluated. Both formulations (LNC-C and SD-LNC-C) reduced TNF-α to similar levels. Therefore, neuroprotection of curcumin in vitro may be improved by nanoencapsulation followed by spray-drying, with no loss of this superior performance. Hence, the redispersible spray-dried powder proposed here represents a suitable approach for the development of innovative nanomedicines containing curcumin for the prevention/treatment of neurodegenerative diseases.