• Antibiotic-free nanotherapeutics: Ultra-small, mucus-penetrating solid lipid nanoparticles enhance the pulmonary delivery and anti-virulence efficacy of novel quorum sensing inhibitors.

      Nafee, Noha; Husari, Ayman; Maurer, Christine K; Lu, Cenbin; de Rossi, Chiara; Steinbach, Anke; Hartmann, Rolf W; Lehr, Claus-Michael; Schneider, Marc (2014-10-28)
      Cystic fibrosis (CF) is a genetic disease mainly manifested in the respiratory tract. Pseudomonas aeruginosa (P. aeruginosa) is the most common pathogen identified in cultures of the CF airways, however, its eradication with antibiotics remains challenging as it grows in biofilms that counterwork human immune response and dramatically decrease susceptibility to antibiotics. P. aeruginosa regulates pathogenicity via a cell-to-cell communication system known as quorum sensing (QS) involving the virulence factor (pyocyanin), thus representing an attractive target for coping with bacterial pathogenicity. The first in vivo potent QS inhibitor (QSI) was recently developed. Nevertheless, its lipophilic nature might hamper its penetration of non-cellular barriers such as mucus and bacterial biofilms, which limits its biomedical application. Successful anti-infective inhalation therapy necessitates proper design of a biodegradable nanocarrier allowing: 1) high loading and prolonged release, 2) mucus penetration, 3) effective pulmonary delivery, and 4) maintenance of the anti-virulence activity of the QSI. In this context, various pharmaceutical lipids were used to prepare ultra-small solid lipid nanoparticles (us-SLNs) by hot melt homogenization. Plain and QSI-loaded SLNs were characterized in terms of colloidal properties, drug loading, in vitro release and acute toxicity on Calu-3 cells. Mucus penetration was studied using a newly-developed confocal microscopy technique based on 3D-time-lapse imaging. For pulmonary application, nebulization efficiency of SLNs and lung deposition using next generation impactor (NGI) were performed. The anti-virulence efficacy was investigated by pyocyanin formation in P. aeruginosa cultures. Ultra-small SLNs (<100nm diameter) provided high encapsulation efficiency (68-95%) according to SLN composition, high burst in phosphate buffer saline compared to prolonged release of the payload over >8h in simulated lung fluid with minor burst. All types and concentrations of plain and QSI-loaded SLNs maintained the viability of Calu-3 cells. 3D time-lapse confocal imaging proved the ability of SLNs to penetrate into artificial sputum model. SLNs were efficiently nebulized; NGI experiments revealed their deposition in the bronchial region. Overall, nanoencapsulated QSI showed up to sevenfold superior anti-virulence activity to the free compound. Most interestingly, the plain SLNs exhibited anti-virulence properties themselves, which was shown to be related to anti-virulence effects of the emulsifiers used. These startling findings represent a new perspective of ultimate significance in the area of nano-based delivery of novel anti-infectives.
    • The bacterial cell envelope as delimiter of anti-infective bioavailability - An in vitro permeation model of the Gram-negative bacterial inner membrane.

      Graef, Florian; Vukosavljevic, Branko; Michel, Jean-Philippe; Wirth, Marius; Ries, Oliver; De Rossi, Chiara; Windbergs, Maike; Rosilio, Véronique; Ducho, Christian; Gordon, Sarah; et al. (2016)
      Gram-negative bacteria possess a unique and complex cell envelope, composed of an inner and outer membrane separated by an intermediate cell wall-containing periplasm. This tripartite structure acts intrinsically as a significant biological barrier, often limiting the permeation of anti-infectives, and so preventing such drugs from reaching their target. Furthermore, identification of the specific permeation-limiting envelope component proves difficult in the case of many anti-infectives, due to the challenges associated with isolation of individual cell envelope structures in bacterial culture. The development of an in vitro permeation model of the Gram-negative inner membrane, prepared by repeated coating of physiologically-relevant phospholipids on Transwell®filter inserts, is therefore reported, as a first step in the development of an overall cell envelope model. Characterization and permeability investigations of model compounds as well as anti-infectives confirmed the suitability of the model for quantitative and kinetically-resolved permeability assessment, and additionally confirmed the importance of employing bacteria-specific base materials for more accurate mimicking of the inner membrane lipid composition - both advantages compared to the majority of existing in vitro approaches. Additional incorporation of further elements of the Gram-negative bacterial cell envelope could ultimately facilitate model application as a screening tool in anti-infective drug discovery or formulation development.
    • Bacteriomimetic invasin-functionalized nanocarriers for intracellular delivery.

      Labouta, Hagar Ibrahim; Menina, Sara; Kochut, Annika; Gordon, Sarah; Geyer, Rebecca; Dersch, Petra; Lehr, Claus-Michael; Helmholtz Institute for Pharmaceutical Research Saarland (HIPS);Saarland University, Building A4.1, 66123 Saarbruecken, Germany. (2015-12-28)
      Intracellular bacteria invade mammalian cells to establish an infectious niche. The current work models adhesion and subsequent internalization strategy of pathogenic bacteria into mammalian cells to design a bacteriomimetic bioinvasive delivery system. We report on the surface functionalization of liposomes with a C-terminal fragment of invasin (InvA497), an invasion factor in the outer membrane of Yersinia pseudotuberculosis. InvA497-functionalized liposomes adhere to mammalian epithelial HEp-2 cell line at different infection stages with a significantly higher efficiency than liposomes functionalized with bovine serum albumin. Covalent attachment of InvA497 results in higher cellular adhesion than liposomes with physically adsorbed InvA497 with non-specific surface protein alignment. Uptake studies in HEp-2 cells indicate active internalization of InvA497-functionalized liposomes via β1-integrin receptor-mediated uptake mechanism mimicking the natural invasion strategy of Y. pseudotuberculosis. Uptake studies in Caco-2 cells at different polarization states demonstrate specific targeting of the InvA497-functionalized liposomes to less polarized cells reflecting the status of inflamed cells. Moreover, when loaded with the anti-infective agent gentamicin and applied to HEp-2 cells infected with Y. pseudotuberculosis, InvA497-functionalized liposomes are able to significantly reduce the infection load relative to non-functionalized drug-loaded liposomes. This indicates a promising application of such a bacteriomimetic system for drug delivery to intracellular compartments.
    • Cellular delivery of polynucleotides by cationic cyclodextrin polyrotaxanes.

      Dandekar, Prajakta; Jain, Ratnesh; Keil, Manuel; Loretz, Brigitta; Muijs, Leon; Schneider, Marc; Auerbach, Dagmar; Jung, Gregor; Lehr, Claus-Michael; Wenz, Gerhard; et al. (2012-12-28)
      Cationic polyrotaxanes, obtained by temperature activated threading of cationic cyclodextrin derivatives onto water-soluble cationic polymers (ionenes), form metastable nanometric polyplexes with pDNA and combinations of siRNA with pDNA. Because of their low toxicity, the polyrotaxane polyplexes constitute a very interesting system for the transfection of polynucleotides into mammalian cells. The complexation of Cy3-labeled siRNA within the polyplexes was demonstrated by fluorescence correlation spectroscopy. The uptake of the polyplexes (red) was imaged by confocal fluorescence microscopy using the A549 cell line as a model (blue: nuclei, green: membranes). The results prove the potential of polyrotaxanes for further investigations involving knocking down genes of therapeutic interest.
    • Nanocarriers for optimizing the balance between interfollicular permeation and follicular uptake of topically applied clobetasol to minimize adverse effects.

      Mathes, C; Melero, A; Conrad, P; Vogt, T; Rigo, L; Selzer, D; Prado, W A; De Rossi, C; Garrigues, T M; Hansen, S; et al. (2016-02-10)
      The treatment of various hair disorders has become a central focus of good dermatologic patient care as it affects men and women all over the world. For many inflammatory-based scalp diseases, glucocorticoids are an essential part of treatment, even though they are known to cause systemic as well as local adverse effects when applied topically. Therefore, efficient targeting and avoidance of these side effects are of utmost importance. Optimizing the balance between drug release, interfollicular permeation, and follicular uptake may allow minimizing these adverse events and simultaneously improve drug delivery, given that one succeeds in targeting a sustained release formulation to the hair follicle. To test this hypothesis, three types of polymeric nanocarriers (nanospheres, nanocapsules, lipid-core nanocapsules) for the potent glucocorticoid clobetasol propionate (CP) were prepared. They all exhibited a sustained release of drug, as was desired. The particles were formulated as a dispersion and hydrogel and (partially) labeled with Rhodamin B for quantification purposes. Follicular uptake was investigated using the Differential Stripping method and was found highest for nanocapsules in dispersion after application of massage. Moreover, the active ingredient (CP) as well as the nanocarrier (Rhodamin B labeled polymer) recovered in the hair follicle were measured simultaneously, revealing an equivalent uptake of both. In contrast, only negligible amounts of CP could be detected in the hair follicle when applied as free drug in solution or hydrogel, regardless of any massage. Skin permeation experiments using heat-separated human epidermis mounted in Franz Diffusion cells revealed equivalent reduced transdermal permeability for all nanocarriers in comparison to application of the free drug. Combining these results, nanocapsules formulated as an aqueous dispersion and applied by massage appeare to be a good candidate to maximize follicular targeting and minimize drug penetration into the interfollicular epidermis. We conclude that such nanotechnology-based formulations provide a viable strategy for more efficient drug delivery to the hair follicle. Moreover, they present a way to minimize adverse effects of potent glucocorticoids by releasing the drug in a controlled manner and simultaneously decreasing interfollicular permeation, offering an advantage over conventional formulations for inflammatory-based skin/scalp diseases.
    • Surface-modified yeast cells: A novel eukaryotic carrier for oral application.

      Kenngott, Elisabeth E; Kiefer, Ruth; Schneider-Daum, Nicole; Hamann, Alf; Schneider, Marc; Schmitt, Manfred J; Breinig, Frank; Helmholtz Institute for Pharmaceutical Research Saarland (HIPS);Saarland University, Building A4.1, 66123 Saarbruecken, Germany. (2016-02-28)
      The effective targeting and subsequent binding of particulate carriers to M cells in Peyer's patches of the gut is a prerequisite for the development of oral delivery systems. We have established a novel carrier system based on cell surface expression of the β1-integrin binding domain of invasins derived from Yersinia enterocolitica and Yersinia pseudotuberculosis on the yeast Saccharomyces cerevisiae. All invasin derivatives were shown to be effectively expressed on the cell surface and recombinant yeast cells showed improved binding to both human HEp-2 cells and M-like cells in vitro. Among the different derivatives tested, the integrin-binding domain of Y. enterocolitica invasin proved to be the most effective and was able to target Peyer's patches in vivo. In conclusion, cell surface-modified yeasts might provide a novel bioadhesive, eukaryotic carrier system for efficient and targeted delivery of either antigens or drugs via the oral route.
    • Telomerase as an emerging target to fight cancer--opportunities and challenges for nanomedicine.

      Philippi, C; Loretz, B; Schaefer, U F; Lehr, C M; Department of Biopharmaceutics and Pharmaceutical Technology, Saarland University, Saarbrücken, Germany. (2010-09-01)
      Telomerase as an enzyme is responsible for the renewal of the chromosomal ends, the so-called telomeres. By preventing them from shortening with each cell cycle, telomerase is able to inhibit cellular senescence and apoptosis. Telomerase activity, which is detectable in the majority of cancer cells, allows them to maintain their proliferative capacity. The thus obtained immortality of those cells again is a key to their malignancy. Based on these discoveries, it is obvious that telomerase inhibitors would represent an innovative approach to fight cancer, and a variety of such candidate molecules are currently in the pipeline. Telomerase inhibitors largely fall in two classes of compounds: small synthetic molecules and nucleotide-based biologicals. For several candidates, some proof of concept studies have been demonstrated, either on cell cultures or in animal models. But the same studies also revealed that inefficient delivery is largely limiting the translational step into the clinic. The most appealing feature of telomerase inhibitors, which distinguishes them from conventional anticancer drugs, is probably seen in their intrinsic non-toxicity to normal cells. Nevertheless, efficient delivery to the target cells, i.e. to the tumor, is still required. Here, some well-known biopharmaceutical problems such as insufficient solubility, permeability or even metabolic stability are frequently encountered. To address these challenges, there is a clear need for adequate delivery technologies, for example by using nanomedicines, that would allow to overcome their biopharmaceutical shortcomings and to warrant a sufficient bioavailability at the target side. This review first briefly explains the concept of telomerase and telomerase inhibition in cancer therapy. It secondly aims to provide an overview of the different currently known telomerase inhibitors. Finally, the biopharmaceutical limitations of these molecules are discussed as well as the possibilities to overcome those limits by novel drug carrier systems and formulation approaches.