• Challenges and Strategies in Drug Delivery Systems for Treatment of Pulmonary Infections.

      Ho, Duy-Khiet; Nichols, Brittany L B; Edgar, Kevin J; Murgia, Xabier; Loretz, Brigitta; Lehr, Claus-Michael; HIPS, Helmholtz-Institut für Pharmazeutische Forschung Saarland, Universitätscampus E8.1 66123 Saarbrücken, Germany. (Elsevier, 2019-09-04)
      Inhalation therapy has been reported as the most effective treatment for respiratory bacterial infections due to the increasing relevance of drug bioavailability. Drug delivery systems (DDS) have the capacity to overcome pulmonary biological barriers limiting the bioavailability of inhaled anti-infectives. This is important to eradicate bacterial infections and to prevent the development of bacterial resistance. Despite substantial efforts in the field, the current state-of-the-art often fails to achieve those goals, and we still observe increasing bacterial resistance. We give a brief insight on benefits and challenges in pulmonary delivery of anti-infectives. In the context of drug delivery development for pulmonary infections, particularly focusing on Pseudomonas aeruginosa (PA) infections, this mini review will critically discuss the main requirements, as well as the recent strategies of drug delivery system synthesis and preparation. Finally, interaction of DDS with crucial pulmonary biological barriers will be of great importance for the success of future applications of the developed DDS.
    • Itaconic Acid Increases the Efficacy of Tobramycin against Biofilms.

      Ho, Duy-Khiet; de Rossi, Chiara; Loretz, Brigitta; Murgia, Xabier; Lehr, Claus-Michael; HIPS, Helmholtz-Institut für Pharmazeutische Forschung Saarland, Universitätscampus E8.1 66123 Saarbrücken, Germany. (MDPI, 2020-07-22)
      The search for novel therapeutics against pulmonary infections, in particular Pseudomonas aeruginosa (PA) biofilm infections, has been intense to deal with the emergent rise of antimicrobial resistance. Despite the numerous achievements in drug discovery and delivery strategies, only a limited number of therapeutics reach the clinic. To allow a timely preclinical development, a formulation should be highly effective, safe, and most importantly facile to produce. Thus, a simple combination of known actives that enhances the therapeutic efficacy would be a preferential choice compared to advanced drug delivery systems. In this study, we propose a novel combination of an anti-inflammatory agent-itaconic acid (itaconate, IA)-and an approved antibiotic-tobramycin (Tob) or ciprofloxacin (Cipro). The combination of Tob and IA at a molar ratio of 1:5 increased the biofilm eradicating efficacy in the strain PA14 wild type (wt) by ~4-fold compared to Tob alone. In contrast, such effect was not observed for the combination of IA with Cipro. Subsequent studies on the influence of IA on bacterial growth, pyocyanin production, and Tob biofilm penetration indicated that complexation with IA enhanced the transport of Tob through the biofilm. We recommend the simple and effective combination of Tob:IA for further testing in advanced preclinical models of PA biofilm infections.
    • Squalenyl Hydrogen Sulfate Nanoparticles for Simultaneous Delivery of Tobramycin and an Alkylquinolone Quorum Sensing Inhibitor Enable the Eradication of P. aeruginosa Biofilm Infections.

      Ho, Duy-Khiet; Murgia, Xabier; de Rossi, Chiara; Christmann, Rebekka; Hüfner de Mello Martins, Antonio G; Koch, Marcus; Andreas, Anastasia; Herrmann, Jennifer; Müller, Rolf; Empting, Martin; et al. (Wiley, 2020-04-03)
      Elimination of pulmonary Pseudomonas aeruginosa (PA) infections is challenging to accomplish with antibiotic therapies, mainly due to resistance mechanisms. Quorum sensing inhibitors (QSIs) interfering with biofilm formation can thus complement antibiotics. For simultaneous and improved delivery of both active agents to the infection sites, self-assembling nanoparticles of a newly synthesized squalenyl hydrogen sulfate (SqNPs) were prepared. These nanocarriers allowed for remarkably high loading capacities of hydrophilic antibiotic tobramycin (Tob) and a novel lipophilic QSI at 30 % and circa 10 %, respectively. The drug-loaded SqNPs showed improved biofilm penetration and enhanced efficacy in relevant biological barriers (mucin/human tracheal mucus, biofilm), leading to complete eradication of PA biofilms at circa 16-fold lower Tob concentration than Tob alone. This study offers a viable therapy optimization and invigorates the research and development of QSIs for clinical use.