• Bioinspired Liposomes for Oral Delivery of Colistin to Combat Intracellular Infections by Salmonella enterica.

      Menina, Sara; Eisenbeis, Janina; Kamal, Mohamed Ashraf M; Koch, Marcus; Bischoff, Markus; Gordon, Sarah; Loretz, Brigitta; Lehr, Claus-Michael; HIPS, Helmholtz-Institut für Pharmazeutische Forschung Saarland, Universitätscampus E8.1 66123 Saarbrücken, Germany. (Wiley-VCH, 2019-07-22)
      Bacterial invasion into eukaryotic cells and the establishment of intracellular infection has proven to be an effective means of resisting antibiotic action, as anti-infective agents commonly exhibit a poor permeability across the host cell membrane. Encapsulation of anti-infectives into nanoscaled delivery systems, such as liposomes, is shown to result in an enhancement of intracellular delivery. The aim of the current work is, therefore, to formulate colistin, a poorly permeable anti-infective, into liposomes suitable for oral delivery, and to functionalize these carriers with a bacteria-derived invasive moiety to enhance their intracellular delivery. Different combinations of phospholipids and cholesterol are explored to optimize liposomal drug encapsulation and stability in biorelevant media. These liposomes are then surface-functionalized with extracellular adherence protein (Eap), derived from Staphylococcus aureus. Treatment of HEp-2 and Caco-2 cells infected with Salmonella enterica using colistin-containing, Eap-functionalized liposomes resulted in a significant reduction of intracellular bacteria, in comparison to treatment with nonfunctionalized liposomes as well as colistin alone. This indicates that such bio-invasive carriers are able to facilitate intracellular delivery of colistin, as necessary for intracellular anti-infective activity. The developed Eap-functionalized liposomes, therefore, present a promising strategy for improving the therapy of intracellular infections.
    • PLGA nanocapsules improve the delivery of clarithromycin to kill intracellular Staphylococcus aureus and Mycobacterium abscessus.

      Anversa Dimer, Frantiescoli; de Souza Carvalho-Wodarz, Cristiane; Goes, Adriely; Cirnski, Katarina; Herrmann, Jennifer; Schmitt, Viktoria; Pätzold, Linda; Abed, Nadia; de Rossi, Chiara; Bischoff, Markus; et al. (Elsevier, 2019-11-18)
      Drug delivery systems are promising for targeting antibiotics directly to infected tissues. To reach intracellular Staphylococcus aureus and Mycobacterium abscessus, we encapsulated clarithromycin in PLGA nanocapsules, suitable for aerosol delivery by nebulization of an aqueous dispersion. Compared to the same dose of free clarithromycin, nanoencapsulation reduced 1000 times the number of intracellular S. aureus in vitro. In RAW cells, while untreated S. aureus was located in acidic compartments, the treated ones were mostly situated in non-acidic compartments. Clarithromycin-nanocapsules were also effective against M. abscessus (70-80% killing efficacy). The activity of clarithromycin-nanocapsules against S. aureus was also confirmed in vivo, using a murine wound model as well as in zebrafish. The permeability of clarithromycin-nanocapsules across Calu-3 monolayers increased in comparison to the free drug, suggesting an improved delivery to sub-epithelial tissues. Thus, clarithromycin-nanocapsules are a promising strategy to target intracellular S. aureus and M. abscessus.