• Preferential uptake of chitosan-coated PLGA nanoparticles by primary human antigen presenting cells.

      Durán, Verónica; Yasar, Hanzey; Becker, Jennifer; Thiyagarajan, Durairaj; Loretz, Brigitta; Kalinke, Ulrich; Lehr, Claus-Michael; HIPS, Helmholtz-Institut für Pharmazeutische Forschung Saarland, Universitätscampus E8.1 66123 Saarbrücken, Germany. (Elsevier, 2019-07-31)
      Biodegradable polymeric nanoparticles (NP) made from poly (lactid-co-glycolide) acid (PLGA) and chitosan (CS) hold promise as innovative formulations for targeted delivery. Since interactions of such NP with primary human immune cells have not been characterized, yet, here we assessed the effect of PLGA or CS-PLGA NP treatment on human peripheral blood mononuclear cells (PBMC), as well as on monocyte-derived DC (moDC). Amongst PBMC, antigen presenting cells (APC) showed higher uptake of both NP preparations than lymphocytes. Furthermore, moDC internalized CS-PLGA NP more efficiently than PLGA NP, presumably because of receptor-mediated endocytosis. Consequently, CS-PLGA NP were delivered mostly to endosomal compartments, whereas PLGA NP primarily ended up in lysosomes. Thus, CS-PLGA NP confer enhanced delivery to endosomal compartments of APC, offering new therapeutic options to either induce or modulate APC function and to inhibit pathogens that preferentially infect APC.
    • Challenges and Strategies in Drug Delivery Systems for Treatment of Pulmonary Infections.

      Ho, Duy-Khiet; Nichols, Brittany L B; Edgar, Kevin J; Murgia, Xabier; Loretz, Brigitta; Lehr, Claus-Michael; HIPS, Helmholtz-Institut für Pharmazeutische Forschung Saarland, Universitätscampus E8.1 66123 Saarbrücken, Germany. (Elsevier, 2019-09-04)
      Inhalation therapy has been reported as the most effective treatment for respiratory bacterial infections due to the increasing relevance of drug bioavailability. Drug delivery systems (DDS) have the capacity to overcome pulmonary biological barriers limiting the bioavailability of inhaled anti-infectives. This is important to eradicate bacterial infections and to prevent the development of bacterial resistance. Despite substantial efforts in the field, the current state-of-the-art often fails to achieve those goals, and we still observe increasing bacterial resistance. We give a brief insight on benefits and challenges in pulmonary delivery of anti-infectives. In the context of drug delivery development for pulmonary infections, particularly focusing on Pseudomonas aeruginosa (PA) infections, this mini review will critically discuss the main requirements, as well as the recent strategies of drug delivery system synthesis and preparation. Finally, interaction of DDS with crucial pulmonary biological barriers will be of great importance for the success of future applications of the developed DDS.
    • Advanced in vitro lung-on-chip platforms for inhalation assays: From prospect to pipeline.

      Artzy-Schnirman, Arbel; Hobi, Nina; Schneider-Daum, Nicole; Guenat, Olivier T; Lehr, Claus-Michael; Sznitman, Josué; HIPS, Helmholtz-Institut für Pharmazeutische Forschung Saarland, Universitätscampus E8.1 66123 Saarbrücken, Germany. (Elsevier, 2019-09-06)
      With rapid advances in micro-fabrication processes and the availability of biologically-relevant lung cells, the development of lung-on-chip platforms is offering novel avenues for more realistic inhalation assays in pharmaceutical research, and thereby an opportunity to depart from traditional in vitro lung assays. As advanced models capturing the cellular pulmonary make-up at an air-liquid interface (ALI), lung-on-chips emulate both morphological features and biological functionality of the airway barrier with the ability to integrate respiratory breathing motions and ensuing tissue strains. Such in vitro systems allow importantly to mimic more realistic physiological respiratory flow conditions, with the opportunity to integrate physically-relevant transport determinants of aerosol inhalation therapy, i.e. recapitulating the pathway from airborne flight to deposition on the airway lumen. In this short opinion, we discuss such points and describe how these attributes are paving new avenues for exploring improved drug carrier designs (e.g. shape, size, etc.) and targeting strategies (e.g. conductive vs. respiratory regions) amongst other. We argue that while technical challenges still lie along the way in rendering in vitro lung-on-chip platforms more widespread across the general pharmaceutical research community, significant momentum is steadily underway in accelerating the prospect of establishing these as in vitro "gold standards"
    • Bioinspired Liposomes for Oral Delivery of Colistin to Combat Intracellular Infections by Salmonella enterica.

      Menina, Sara; Eisenbeis, Janina; Kamal, Mohamed Ashraf M; Koch, Marcus; Bischoff, Markus; Gordon, Sarah; Loretz, Brigitta; Lehr, Claus-Michael; HIPS, Helmholtz-Institut für Pharmazeutische Forschung Saarland, Universitätscampus E8.1 66123 Saarbrücken, Germany. (Wiley-VCH, 2019-07-22)
      Bacterial invasion into eukaryotic cells and the establishment of intracellular infection has proven to be an effective means of resisting antibiotic action, as anti-infective agents commonly exhibit a poor permeability across the host cell membrane. Encapsulation of anti-infectives into nanoscaled delivery systems, such as liposomes, is shown to result in an enhancement of intracellular delivery. The aim of the current work is, therefore, to formulate colistin, a poorly permeable anti-infective, into liposomes suitable for oral delivery, and to functionalize these carriers with a bacteria-derived invasive moiety to enhance their intracellular delivery. Different combinations of phospholipids and cholesterol are explored to optimize liposomal drug encapsulation and stability in biorelevant media. These liposomes are then surface-functionalized with extracellular adherence protein (Eap), derived from Staphylococcus aureus. Treatment of HEp-2 and Caco-2 cells infected with Salmonella enterica using colistin-containing, Eap-functionalized liposomes resulted in a significant reduction of intracellular bacteria, in comparison to treatment with nonfunctionalized liposomes as well as colistin alone. This indicates that such bio-invasive carriers are able to facilitate intracellular delivery of colistin, as necessary for intracellular anti-infective activity. The developed Eap-functionalized liposomes, therefore, present a promising strategy for improving the therapy of intracellular infections.
    • Co-culture of human alveolar epithelial (hAELVi) and macrophage (THP-1) cell lines.

      Kletting, Stephanie; Barthold, Sarah; Repnik, Urska; Griffiths, Gareth; Loretz, Brigitta; Schneider-Daum, Nicole; de Souza Carvalho-Wodarz, Cristiane; Lehr, Claus-Michael; HIPS, Helmholtz-Institut für Pharmazeutische Forschung Saarland, Universitätscampus E8.1 66123 Saarbrücken, Germany. (Springer Nature, 2018-01-01)
      The air-blood barrier is mainly composed of alveolar epithelial cells and macrophages. Whereas the epithelium acts as a diffusional barrier, macrophages represent an immunological barrier, in particular for larger molecules and nanoparticles. This paper describes a new co-culture of human cell lines representing both cell types. Acquiring, culturing and maintaining primary alveolar epithelial cells presents significant logistical and technical difficulties. The recently established human alveolar epithelial lentivirus immortalized cell line, hAELVi, when grown on permeable filters, forms monolayers with high functional and morphological resemblance to alveolar type I cells. To model alveolar macrophages, the human cell line THP-1 was seeded on pre-formed hAELVi monolayers. The co-culture was characterized regarding cellular morphology, viability and barrier function. Macrophages were homogenously distributed on the epithelium and could be kept in co-culture for up to 7 days. Transmission electron microscopy showed loose contact between THP-1 and hAELVi cells. When grown at air liquid interface, both cells were covered with extracellular matrix-like structure, which was absent in THP-1 mono-culture. In co-culture with macrophages, hAELVi cells displayed similar, sometimes even higher, transepithelial electrical resistance than in mono-cultures. When exposed to silver and starch nanoparticles, hAELVi mono-cultures were more tolerant to the particles than THP-1 mono-cultures. Viability in the co-culture was similar to that of hAELVi mono-cultures. Transport studies with sodium fluorescein in the presence/absence of EDTA proved that the co-culture acts as functional diffusion barrier. These data demonstrate that hAELVi-/THP-1 co-cultures represent a promising model for safety and permeability studies of inhaled chemicals, drugs and nanoparticles.
    • The role of mucus on drug transport and its potential to affect therapeutic outcomes.

      Murgia, Xabier; Loretz, Brigitta; Hartwig, Olga; Hittinger, Marius; Lehr, Claus-Michael; HIPS, Helmholtz-Institut für Pharmazeutische Forschung Saarland, Universitätscampus E8.1 66123 Saarbrücken, Germany. (Elsevier, 2018-01-15)
      A layer of mucus covers the surface of all wet epithelia throughout the human body. Mucus is a hydrogel mainly composed of water, mucins (glycoproteins), DNA, proteins, lipids, and cell debris. This complex composition yields a tenacious viscoelastic hydrogel that lubricates and protects the exposed epithelia from external threats and enzymatic degradation. The natural protective role of mucus is nowadays acknowledged as a major barrier to be overcome in non-invasive drug delivery. The heterogeneity of mucus components offers a wide range of potential chemical interaction sites for macromolecules, while the mesh-like architecture given to mucus by the intermolecular cross-linking of mucin molecules results in a dense network that physically, and in a size-dependent manner, hinders the diffusion of nanoparticles through mucus. Consequently, drug diffusion, epithelial absorption, drug bioavailability, and ultimately therapeutic outcomes of mucosal drug delivery can be attenuated
    • Preparation, characterisation and in vitro antibacterial property of ciprofloxacin-loaded nanostructured lipid carrier for treatment of Bacillus subtilis infection.

      Nnamani, Petra; Ugwu, Agatha; Ibezim, Emmanuel; Onoja, Simon; Odo, Amelia; Windbergs, Maike; Rossi, Chiara; Lehr, Claus-Michael; Attama, Anthony; HIPS, Helmholtz-Institut für Pharmazeutische Forschung Saarland, Universitätscampus E8.1 66123 Saarbrücken, Germany. (Taylor & Francis, 2019-02-13)
      CONTEXT: In this study, controlled ciprofloxacin (CIPRO) nanostrustructured lipid carriers of Precirol® ATO 5/Transcutol® HP (batch A) and tallow fat/Transcutol® HP (batch B) was carreid out. OBJECTIVE: The aim was to improve solubility and bioavailability of CIPRO. OBJECTIVE: Study of controlled ciprofloxacin (CIPRO) nanostructured lipid carriers of Precirol® ATO 5/Transcutol® HP (batch A) and tallow fat/Transcutol® HP (batch B). METHODS: CIPRO concentrations C1-5 (0.0, 0.2, 0.5, 0.8, and 1.0% w/w) as AC1-5 and BC1-5 were prepared by hot homogenisation and characterised by zetasizer, differential scanning calorimetry, Fourier transform infra-red spectroscopy, in vitro drug release and growth inhibitory zone diameter (IZD) on agar-seeded Bacillus subtilis. RESULTS: AC5 achieved polydispersed particles of ∼605 nm, 92% encapsulation efficiency (EE) and -28 mV similar to BC5 (∼789 nm, 91% EE, and -31 mV). Crystallinity indices (AC5 and BC5) were low at 3 and 5%, respectively. CIPRO release in AC5 was ∼98% in SGF (pH 1.2) and BC5 similarly ∼98% in SIF (pH 6.8). CONCLUSIONS: AC5 had superior growth inhibition of B. subtilis at lower concentration (1.2 µg/mL) than BC5 and CIPRO controls; hence could serve as possible sustained delivery system of CIPRO.
    • Aspherical and Spherical InvA497-Functionalized Nanocarriers for Intracellular Delivery of Anti-Infective Agents.

      Castoldi, Arianna; Empting, Martin; De Rossi, Chiara; Mayr, Karsten; Dersch, Petra; Hartmann, Rolf; Müller, Rolf; Gordon, Sarah; Lehr, Claus-Michael; HIPS, Helmholtz-Institut für Pharmazeutische Forschung Saarland, Universitätscampus E8.1 66123 Saarbrücken, Germany. (Springer, 2018-12-05)
      The objective of this work was to evaluate the potential of polymeric spherical and aspherical invasive nanocarriers, loaded with antibiotic, to access and treat intracellular bacterial infections. Aspherical nanocarriers were prepared by stretching of spherical precursors, and both aspherical and spherical nanocarriers were surface-functionalized with the invasive protein InvA497. The relative uptake of nanocarriers into HEp-2 epithelial cells was then assessed. Nanocarriers were subsequently loaded with a preparation of the non-permeable antibiotic gentamicin, and tested for their ability to treat HEp-2 cells infected with the enteroinvasive bacterium Shigella flexneri. InvA497-functionalized nanocarriers of both spherical and aspherical shape showed a significantly improved rate and extent of uptake into HEp-2 cells in comparison to non-functionalized nanocarriers. Functionalized and antibiotic-loaded nanocarriers demonstrated a dose dependent killing of intracellular S. flexneri. A slight but significant enhancement of intracellular bacterial killing was also observed with aspherical as compared to spherical functionalized nanocarriers at the highest tested concentration. InvA497-functionalized, polymer-based nanocarriers were able to efficiently deliver a non-permeable antibiotic across host cell membranes to affect killing of intracellular bacteria. Functionalized nanocarriers with an aspherical shape showed an interesting future potential for intracellular infection therapy.
    • Chemically modified hCFTR mRNAs recuperate lung function in a mouse model of cystic fibrosis.

      Haque, A K M Ashiqul; Dewerth, Alexander; Antony, Justin S; Riethmüller, Joachim; Schweizer, Georg R; Weinmann, Petra; Latifi, Ngadhnjim; Yasar, Hanzey; Pedemonte, Nicoletta; Sondo, Elvira; et al. (Nature publishing group, 2018-11-13)
      Gene therapy has always been a promising therapeutic approach for Cystic Fibrosis (CF). However, numerous trials using DNA or viral vectors encoding the correct protein resulted in a general low efficacy. In the last years, chemically modified messenger RNA (cmRNA) has been proven to be a highly potent, pulmonary drug. Consequently, we first explored the expression, function and immunogenicity of human (h)CFTR encoded by cmRNA
    • Surfactant replacement therapy in combination with different non-invasive ventilation techniques in spontaneously-breathing, surfactant-depleted adult rabbits.

      Ricci, Francesca; Casiraghi, Costanza; Storti, Matteo; D'Alò, Francesco; Catozzi, Chiara; Ciccimarra, Roberta; Ravanetti, Francesca; Cacchioli, Antonio; Villetti, Gino; Civelli, Maurizio; et al. (2018-01-01)
      Nasal intermittent positive pressure ventilation (NIPPV) holds great potential as a primary ventilation support method for Respiratory Distress Syndrome (RDS). The use of NIPPV may also be of great value combined with minimally invasive surfactant delivery. Our aim was to implement an in vivo model of RDS, which can be managed with different non-invasive ventilation (NIV) strategies, including non-synchronized NIPPV, synchronized NIPPV (SNIPPV), and nasal continuous positive airway pressure (NCPAP). Forty-two surfactant-depleted adult rabbits were allocated in six different groups: three groups of animals were treated with only NIV for three hours (NIPPV, SNIPPV, and NCPAP groups), while three other groups were treated with surfactant (SF) followed by NIV (NIPPV+SF, SNIPPV+SF, and NCPAP+SF groups). Arterial gas exchange, ventilation indices, and dynamic compliance were assessed. Post-mortem the lungs were sampled for histological evaluation. Surfactant depletion was successfully achieved by repeated broncho-alveolar lavages (BALs). After BALs, all animals developed a moderate respiratory distress, which could not be reverted by merely applying NIV. Conversely, surfactant administration followed by NIV induced a rapid improvement of arterial oxygenation in all surfactant-treated groups. Breath synchronization was associated with a significantly better response in terms of gas exchange and dynamic compliance compared to non-synchronized NIPPV, showing also the lowest injury scores after histological assessment. The proposed in vivo model of surfactant deficiency was successfully managed with NCPAP, NIPPV, or SNIPPV; this model resembles a moderate respiratory distress and it is suitable for the preclinical testing of less invasive surfactant administration techniques.
    • Medium throughput breathing human primary cell alveolus-on-chip model.

      Stucki, Janick D; Hobi, Nina; Galimov, Artur; Stucki, Andreas O; Schneider-Daum, Nicole; Lehr, Claus-Michael; Huwer, Hanno; Frick, Manfred; Funke-Chambour, Manuela; Geiser, Thomas; et al. (2018-09-25)
      Organs-on-chips have the potential to improve drug development efficiency and decrease the need for animal testing. For the successful integration of these devices in research and industry, they must reproduce in vivo contexts as closely as possible and be easy to use. Here, we describe a 'breathing' lung-on-chip array equipped with a passive medium exchange mechanism that provide an in vivo-like environment to primary human lung alveolar cells (hAEpCs) and primary lung endothelial cells. This configuration allows the preservation of the phenotype and the function of hAEpCs for several days, the conservation of the epithelial barrier functionality, while enabling simple sampling of the supernatant from the basal chamber. In addition, the chip design increases experimental throughput and enables trans-epithelial electrical resistance measurements using standard equipment. Biological validation revealed that human primary alveolar type I (ATI) and type II-like (ATII) epithelial cells could be successfully cultured on the chip over multiple days. Moreover, the effect of the physiological cyclic strain showed that the epithelial barrier permeability was significantly affected. Long-term co-culture of primary human lung epithelial and endothelial cells demonstrated the potential of the lung-on-chip array for reproducible cell culture under physiological conditions. Thus, this breathing lung-on-chip array, in combination with patients' primary ATI, ATII, and lung endothelial cells, has the potential to become a valuable tool for lung research, drug discovery and precision medicine.
    • Vitamin D Deficiency Does Not Result in a Breach of Host Defense in Murine Models of Pneumonia.

      Niederstrasser, Julia; Herr, Christian; Wolf, Lisa; Lehr, Claus M; Beisswenger, Christoph; Bals, Robert; HIPS, Helmholtz-Institut für pharmazeutische Forschung Saarland, Universitätscampus 8.1, 66123 Saarbrücken, Germany. (2016-11-01)
      Vitamin D (VitD) has a role in the regulation of calcium and phosphate metabolism and in addition impacts the activity of the immune system. VitD deficiency might be linked to increased susceptibility to respiratory tract infection. The aim of the present study was to characterize the impact of VitD deficiency on the susceptibility to bacterial infection in murine models. C57BL/6N mice were fed a diet with or without VitD for 10 weeks. The VitD-deficient or -sufficient mice were infected with Pseudomonas aeruginosa or Streptococcus pneumoniae The colonization and inflammatory response in the lung were analyzed at defined time points. The serum 25-hydroxy-VitD concentration was significantly lower in mice on the VitD-deficient diet. In infection experiments with Pseudomonas aeruginosa or Streptococcus pneumoniae, no differences could be observed in the numbers of viable bacteria or in differential cell counts in the bronchoalveolar lavage fluids. Measurements of inflammatory cytokines (KC and interleukin-1β [IL-1β]) did not show significant differences between the groups. In conclusion, VitD-deficient animals did not show significantly increased susceptibility to infection or an altered course of infection. The immune systems of humans and mice likely respond differently to VitD. Murine models are likely not appropriate for drawing conclusions on the role of VitD in human pulmonary host defense.
    • Kinetics of mRNA delivery and protein translation in dendritic cells using lipid-coated PLGA nanoparticles.

      Yasar, Hanzey; Biehl, Alexander; De Rossi, Chiara; Koch, Marcus; Murgia, Xabi; Loretz, Brigitta; Lehr, Claus-Michael; HIPS, Helmholtz-Institut für pharmazeutische Forschung Saarland, Universitätscampus 8.1, 66123 Saarbrücken, Germany. (2018-09-19)
      Messenger RNA (mRNA) has gained remarkable attention as an alternative to DNA-based therapies in biomedical research. A variety of biodegradable nanoparticles (NPs) has been developed including lipid-based and polymer-based systems for mRNA delivery. However, both systems still lack in achieving an efficient transfection rate and a detailed understanding of the mRNA transgene expression kinetics. Therefore, quantitative analysis of the time-dependent translation behavior would provide a better understanding of mRNA's transient nature and further aid the enhancement of appropriate carriers with the perspective to generate future precision nanomedicines with quick response to treat various diseases. A lipid-polymer hybrid system complexed with mRNA was evaluated regarding its efficiency to transfect dendritic cells (DCs) by simultaneous live cell video imaging of both particle uptake and reporter gene expression. We prepared and optimized NPs consisting of poly (lactid-co-glycolid) (PLGA) coated with the cationic lipid 1, 2-di-O-octadecenyl-3-trimethylammonium propane abbreviated as LPNs. An earlier developed polymer-based delivery system (chitosan-PLGA NPs) served for comparison. Both NPs types were complexed with mRNA-mCherry at various ratios. While cellular uptake and toxicity of either NPs was comparable, LPNs showed a significantly higher transfection efficiency of ~ 80% while chitosan-PLGA NPs revealed only ~ 5%. Further kinetic analysis elicited a start of protein translation after 1 h, with a maximum after 4 h and drop of transgene expression after 48 h post-transfection, in agreement with the transient nature of mRNA. Charge-mediated complexation of mRNA to NPs enables efficient and fast cellular delivery and subsequent protein translation. While cellular uptake of both NP types was comparable, mRNA transgene expression was superior to polymer-based NPs when delivered by lipid-polymer NPs.
    • Extracellular vesicles protect glucuronidase model enzymes during freeze-drying.

      Frank, Julia; Richter, Maximilian; de Rossi, Chiara; Lehr, Claus-Michael; Fuhrmann, Kathrin; Fuhrmann, Gregor; HIPS, Helmholtz-Institut für pharmazeutische Forschung Saarland, Universitätscampus 8.1, 66123 Saarbrücken, Germany. (2018-08-17)
      Extracellular vesicles (EVs) are natural nanoparticles that play important roles in intercellular communication and are increasingly studied for biosignalling, pathogenesis and therapy. Nevertheless, little is known about optimal conditions for their transfer and storage, and the potential impact on preserving EV-loaded cargoes. We present the first comprehensive stability assessment of different widely available types of EVs during various storage conditions including -80 °C, 4 °C, room temperature, and freeze-drying (lyophilisation). Lyophilisation of EVs would allow easy handling at room temperature and thus significantly enhance their expanded investigation. A model enzyme, β-glucuronidase, was loaded into different types of EVs derived from mesenchymal stem cells, endothelial cells and cancer cells. Using asymmetric flow field-flow fractionation we proved that the model enzyme is indeed stably encapsulated into EVs. When assessing enzyme activity as indicator for EV stability, and in comparison to liposomes, we show that EVs are intrinsically stable during lyophilisation, an effect further enhanced by cryoprotectants. Our findings provide new insight for exploring lyophilisation as a novel storage modality and we create an important basis for standardised and advanced EV applications in biomedical research.
    • High-throughput phenotyping by applying digital morphometrics and fluorescence induction curves in seeds to identifying variations: A case study of Annona (Annonaceae) species

      Pontes, Montcharles S.; Montefusco-Pereira, Carlos V.; Misra, Biswapriya B.; Ribeiro-Junior, Howard L.; Graciano, Daniela E.; Santos, Jaqueline S.; Nobrega, Michele A.S.; Fernandes, Shaline S.L.; Caires, Anderson R.L.; Santiago, Etenaldo F.; et al.
    • A Model for the Transient Subdiffusive Behavior of Particles in Mucus.

      Ernst, Matthias; John, Thomas; Guenther, Marco; Wagner, Christian; Schaefer, Ulrich F; Lehr, Claus-Michael; HIPS, Helmholtz-Institut für pharmazeutische Forschung Saarland, Universitätscampus 8.1, 66123 Saarbrücken, Germany. (2017-01-10)
      In this study we have applied a model to explain the reported subdiffusion of particles in mucus, based on the measured mean squared displacements (MSD). The model considers Brownian diffusion of particles in a confined geometry, made from permeable membranes. The applied model predicts a normal diffusive behavior at very short and long time lags, as observed in several experiments. In between these timescales, we find that the "subdiffusive" regime is only a transient effect, MSD∝τ
    • Combining MucilAir™ and Vitrocell Powder Chamber for the In Vitro Evaluation of Nasal Ointments in the Context of Aerosolized Pollen.

      Metz, Julia; Knoth, Katharina; Groß, Henrik; Lehr, Claus-Michael; Stäbler, Carolin; Bock, Udo; Hittinger, Marius; HIPS, Helmholtz-Institute für pharmazeutische Forschung Saarland, Universitätscampus E8.1, 66123 Saarbrücken, Germany. (2018-05-10)
      Hay fever is notoriously triggered when nasal mucosa is exposed to allergenic pollen. One possibility to overcome this pollen exposure may be the application of an ointment with physical protective effects. In this context, we have investigated Bepanthen Eye and Nose Ointment and the ointment basis petrolatum as reference while using contemporary in vitro techniques. Pollen from false ragweed () was used as an allergy-causing model deposited as aerosol using the Vitrocell Powder Chamber (VPC) on Transwell inserts, while being coated with either Bepanthen Eye and Nose Ointment and petrolatum. No pollen penetration into ointments was observed upon confocal scanning laser microscopy during an incubation period of 2 h at 37 °C. The cellular response was further investigated by integrating the MucilAir™ cell system in the VPC and by applying pollen to Bepanthen Eye and Nose Ointment covered cell cultures. For comparison, MucilAir™ were stimulated by lipopolysaccharides (LPS). No increased cytokine release of IL-6, TNF-α, or IL-8 was found after 4 h of pollen exposure, which demonstrates the safety of such ointments. Since nasal ointments act as a physical barrier against pollen, such preparations might support the prevention and management of hay fever.
    • Starch-Chitosan Polyplexes: A Versatile Carrier System for Anti-Infectives and Gene Delivery

      Yasar, Hanzey; Ho, Duy-Khiet; De Rossi, Chiara; Herrmann, Jennifer; Gordon, Sarah; Loretz, Brigitta; Lehr, Claus Michael; HIPS, Helmholtz-Institut für pharmazeutische Forschung Saarland, Universitätscampus 8.1, 66123 Saarbrücken, Germany. (2018-03-01)
    • A miRNA181a/NFAT5 axis links impaired T cell tolerance induction with autoimmune type 1 diabetes.

      Serr, Isabelle; Scherm, Martin G; Zahm, Adam M; Schug, Jonathan; Flynn, Victoria K; Hippich, Markus; Kälin, Stefanie; Becker, Maike; Achenbach, Peter; Nikolaev, Alexei; et al. (2018-01-03)
      Molecular checkpoints that trigger the onset of islet autoimmunity or progression to human type 1 diabetes (T1D) are incompletely understood. Using T cells from children at an early stage of islet autoimmunity without clinical T1D, we find that a microRNA181a (miRNA181a)-mediated increase in signal strength of stimulation and costimulation links nuclear factor of activated T cells 5 (NFAT5) with impaired tolerance induction and autoimmune activation. We show that enhancing miRNA181a activity increases NFAT5 expression while inhibiting FOXP3+regulatory T cell (Treg) induction in vitro. Accordingly, Treginduction is improved using T cells from NFAT5 knockout (NFAT5ko) animals, whereas altering miRNA181a activity does not affect Treginduction in NFAT5ko T cells. Moreover, high costimulatory signals result in phosphoinositide 3-kinase (PI3K)-mediated NFAT5, which interferes with FoxP3+Treginduction. Blocking miRNA181a or NFAT5 increases Treginduction in murine and humanized models and reduces murine islet autoimmunity in vivo. These findings suggest targeting miRNA181a and/or NFAT5 signaling for the development of innovative personalized medicines to limit islet autoimmunity.
    • Calcifediol-loaded liposomes for local treatment of pulmonary bacterial infections.

      Castoldi, Arianna; Herr, Christian; Niederstraßer, Julia; Labouta, Hagar Ibrahim; Melero, Ana; Gordon, Sarah; Schneider-Daum, Nicole; Bals, Robert; Lehr, Claus Michael; HIPS, Helmholtz-Institut für pharmazeutische Forschung Saarland, Universitätscampus 8.1, 66123 Saarbrücken, Germany. (2017-09)
      The influence of vitamin D3 and its metabolites calcifediol (25(OH)D) and calcitriol on immune regulation and inflammation is well described, and raises the question of potential benefit against bacterial infections. In the current study, 25(OH)D was encapsulated in liposomes to enable aerosolisation, and tested for the ability to prevent pulmonary infection by Pseudomonas aeruginosa. Prepared 25(OH)D-loaded liposomes were nanosized and monodisperse, with a negative surface charge and a 25(OH)D entrapment efficiency of approximately 23%. Jet nebulisation of liposomes was seen to yield an aerosol suitable for tracheo-bronchial deposition. Interestingly, 25(OH)D in either liposomes or ethanolic solution had no effect on the release of the proinflammatory cytokine KC from Pseudomonas-infected murine epithelial cells (LA-4); treatment of infected, human bronchial 16-HBE cells with 25(OH)D liposomes however resulted in a significant reduction in bacterial survival. Together with the importance of selecting an application-appropriate in vitro model, the current study illustrates the feasibility and practicality of employing liposomes as a means to achieve 25(OH)D lung deposition. 25(OH)D-loaded liposomes further demonstrated promising effects regarding prevention of Pseudomonas infection in human bronchial epithelial cells.