• Login
    Search 
    •   Home
    • Department of Drug Delivery ([HIPS] DDEL)
    • publications of the department drug delivery ([HIPS] DDEL)
    • Search
    •   Home
    • Department of Drug Delivery ([HIPS] DDEL)
    • publications of the department drug delivery ([HIPS] DDEL)
    • Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of HZICommunitiesTitleAuthorsIssue DateSubmit DateSubjectsJournalTypesSubject (MeSH)This CollectionTitleAuthorsIssue DateSubmit DateSubjectsJournalTypesSubject (MeSH)

    My Account

    LoginRegister

    Filter by Category

    SubjectsNanoparticles (3)bacteriomimetic nanocarriers (2)microfluidics (2)nanoparticles (2)organ-on-chip (2)View MoreJournalJournal of controlled release : official journal of the Controlled Release Society (7)Pharmaceutical research (7)ALTEX (4)European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V (4)International journal of pharmaceutics (4)View MoreAuthorsLehr, Claus-Michael (48)Loretz, Brigitta (19)Schneider-Daum, Nicole (19)Lehr, Claus Michael (15)Schneider, Marc (15)View MoreYear (Issue Date)2016 (18)2015 (16)2013 (11)2017 (11)2018 (11)TypesArticle (86)article (1)Editorial (1)Meetings and Proceedings (1)

    Local Links

    About: PolicyHelmholtz-Zentrum für Infektionsforschung HomepageHZI-Library HomepageContact usOpen AccessPublishing ApproachGetting StartedEditing ProfileBrowsing OptionsUsing SearchSubmitting Content

    Statistics

    Display statistics
     

    Search

    Show Advanced FiltersHide Advanced Filters

    Filters

    Now showing items 1-10 of 89

    • List view
    • Grid view
    • Sort Options:
    • Relevance
    • Title Asc
    • Title Desc
    • Issue Date Asc
    • Issue Date Desc
    • Results Per Page:
    • 5
    • 10
    • 20
    • 40
    • 60
    • 80
    • 100

    • 89CSV
    • 89RefMan
    • 89EndNote
    • 89BibTex
    • Selective Export
    • Select All
    • Help
    Thumbnail

    Lymphatic endothelial cells are a replicative niche for Mycobacterium tuberculosis.

    Lerner, Thomas R; de Souza Carvalho-Wodarz, Cristiane; Repnik, Urska; Russell, Matthew R G; Borel, Sophie; Diedrich, Collin R; Rohde, M; Wainwright, Helen; Collinson, Lucy M; Wilkinson, Robert J; et al. (2016-03-01)
    In extrapulmonary tuberculosis, the most common site of infection is within the lymphatic system, and there is growing recognition that lymphatic endothelial cells (LECs) are involved in immune function. Here, we identified LECs, which line the lymphatic vessels, as a niche for Mycobacterium tuberculosis in the lymph nodes of patients with tuberculosis. In cultured primary human LECs (hLECs), we determined that M. tuberculosis replicates both in the cytosol and within autophagosomes, but the bacteria failed to replicate when the virulence locus RD1 was deleted. Activation by IFN-γ induced a cell-autonomous response in hLECs via autophagy and NO production that restricted M. tuberculosis growth. Thus, depending on the activation status of LECs, autophagy can both promote and restrict replication. Together, these findings reveal a previously unrecognized role for hLECs and autophagy in tuberculosis pathogenesis and suggest that hLECs are a potential niche for M. tuberculosis that allows establishment of persistent infection in lymph nodes.
    Thumbnail

    Improved input parameters for diffusion models of skin absorption.

    Hansen, Steffi; Lehr, Claus-Michael; Schaefer, Ulrich F (2013-02)
    To use a diffusion model for predicting skin absorption requires accurate estimates of input parameters on model geometry, affinity and transport characteristics. This review summarizes methods to obtain input parameters for diffusion models of skin absorption focusing on partition and diffusion coefficients. These include experimental methods, extrapolation approaches, and correlations that relate partition and diffusion coefficients to tabulated physico-chemical solute properties. Exhaustive databases on lipid-water and corneocyte protein-water partition coefficients are presented and analyzed to provide improved approximations to estimate lipid-water and corneocyte protein-water partition coefficients. The most commonly used estimates of lipid and corneocyte diffusion coefficients are also reviewed. In order to improve modeling of skin absorption in the future diffusion models should include the vertical stratum corneum heterogeneity, slow equilibration processes, the absorption from complex non-aqueous formulations, and an improved representation of dermal absorption processes. This will require input parameters for which no suitable estimates are yet available.
    Thumbnail

    Characterization of Microvesicles Released from Human Red Blood Cells.

    Nguyen, Duc Bach; Thuy Ly, Thi Bich; Wesseling, Mauro Carlos; Hittinger, Marius; Torge, Afra; Devitt, Andrew; Perrie, Yvonne; Bernhardt, Ingolf (2016)
    Extracellular vesicles (EVs) are spherical fragments of cell membrane released from various cell types under physiological as well as pathological conditions. Based on their size and origin, EVs are classified as exosome, microvesicles (MVs) and apoptotic bodies. Recently, the release of MVs from human red blood cells (RBCs) under different conditions has been reported. MVs are released by outward budding and fission of the plasma membrane. However, the outward budding process itself, the release of MVs and the physical properties of these MVs have not been well investigated. The aim of this study is to investigate the formation process, isolation and characterization of MVs released from RBCs under conditions of stimulating Ca2+ uptake and activation of protein kinase C.
    Thumbnail

    Dissolution techniques for in vitro testing of dry powders for inhalation.

    May, Sabine; Jensen, Birte; Wolkenhauer, Markus; Schneider, Marc; Lehr, Claus Michael (2012-08)
    To evaluate different dissolution testing methods and subsequently develop a simple to perform but reproducible and discriminating dissolution technique for inhalative powders.
    Thumbnail

    Physiological, Biochemical, and Biophysical Characterization of the Lung-Lavaged Spontaneously-Breathing Rabbit as a Model for Respiratory Distress Syndrome.

    Ricci, Francesca; Catozzi, Chiara; Murgia, Xabier; Rosa, Brenda; Amidani, Davide; Lorenzini, Luca; Bianco, Federico; Rivetti, Claudio; Catinella, Silvia; Villetti, Gino; et al. (2017)
    Nasal continuous positive airway pressure (nCPAP) is a widely accepted technique of non-invasive respiratory support in spontaneously-breathing premature infants with respiratory distress syndrome (RDS). Surfactant administration techniques compatible with nCPAP ventilation strategy are actively investigated. Our aim is to set up and validate a respiratory distress animal model that can be managed on nCPAP suitable for surfactant administration techniques studies. Surfactant depletion was induced by bronchoalveolar lavages (BALs) on 18 adult rabbits. Full depletion was assessed by surfactant component analysis on the BALs samples. Animals were randomized into two groups: Control group (nCPAP only) and InSurE group, consisting of a bolus of surfactant (Poractant alfa, 200 mg/kg) followed by nCPAP. Arterial blood gases were monitored until animal sacrifice, 3 hours post treatment. Lung mechanics were evaluated just before and after BALs, at the time of treatment, and at the end of the procedure. Surfactant phospholipids and protein analysis as well as surface tension measurements on sequential BALs confirmed the efficacy of the surfactant depletion procedure. The InSurE group showed a significant improvement of blood oxygenation and lung mechanics. On the contrary, no signs of recovery were appreciated in animals treated with just nCPAP. The surfactant-depleted adult rabbit RDS model proved to be a valuable and efficient preclinical tool for mimicking the clinical scenario of preterm infants affected by mild/moderate RDS who spontaneously breathe and do not require mechanical ventilation. This population is of particular interest as potential target for the non-invasive administration of surfactant.
    Thumbnail

    A Model for the Transient Subdiffusive Behavior of Particles in Mucus.

    Ernst, Matthias; John, Thomas; Guenther, Marco; Wagner, Christian; Schaefer, Ulrich F; Lehr, Claus-Michael (2017-01-10)
    In this study we have applied a model to explain the reported subdiffusion of particles in mucus, based on the measured mean squared displacements (MSD). The model considers Brownian diffusion of particles in a confined geometry, made from permeable membranes. The applied model predicts a normal diffusive behavior at very short and long time lags, as observed in several experiments. In between these timescales, we find that the "subdiffusive" regime is only a transient effect, MSD∝τ
    Thumbnail

    Human alveolar epithelial cells expressing tight junctions to model the air-blood barrier.

    Kuehn, Anna; Kletting, Stephanie; de Souza Carvalho-Wodarz, Cristiane; Repnik, Urska; Griffiths, Gareth; Fischer, Ulrike; Meese, Eckart; Huwer, Hanno; Wirth, Dagmar; May, Tobias; et al. (2016-03-17)
    This paper describes a new human alveolar epithelial cell line (hAELVi - human Alveolar Epithelial Lentivirus immortalized) with type I-like characteristics and functional tight junctions, suitable to model the air-blood barrier of the peripheral lung. Primary human alveolar epithelial cells were immortalized by a novel regimen, grown as monolayers on permeable filter supports and characterized morphologically, biochemically and biophysically. hAELVi cells maintain the capacity to form tight intercellular junctions, with high trans-epithelial electrical resistance (> 1000 Ω*cm²). The cells could be kept in culture over several days, up to passage 75, under liquid-liquid as well as air-liquid conditions. Ultrastructural analysis and real time PCR revealed type I-like cell properties, such as the presence of caveolae, expression of caveolin-1, and absence of surfactant protein C. Accounting for the barrier properties, inter-digitations sealed with tight junctions and desmosomes were also observed. Low permeability of the hydrophilic marker sodium fluorescein confirmed the suitability of hAELVi cells for in vitro transport studies across the alveolar epithelium. These results suggest that hAELVi cells reflect the essential features of the air-blood barrier, as needed for an alternative to animal testing to study absorption and toxicity of inhaled drugs, chemicals and nanomaterials.
    Thumbnail

    pH-triggered drug release from biodegradable microwells for oral drug delivery.

    Nielsen, Line Hagner; Nagstrup, Johan; Gordon, Sarah; Keller, Stephan Sylvest; Østergaard, Jesper; Rades, Thomas; Müllertz, Anette; Boisen, Anja (2015-06)
    Microwells fabricated from poly-L-lactic acid (PLLA) were evaluated for their application as an oral drug delivery system using the amorphous sodium salt of furosemide (ASSF) as a model drug. Hot embossing of PLLA resulted in fabrication of microwells with an inner diameter of 240 μm and a height of 100 μm. The microwells were filled with ASSF using a modified screen printing technique, followed by coating of the microwell cavities with a gastro-resistant lid of Eudragit® L100. The release behavior of ASSF from the coated microwells was investigated using a μ-Diss profiler and a UV imaging system, and under conditions simulating the changing environment of the gastrointestinal tract. Biorelevant gastric medium (pH 1.6) was employed, after which a change to biorelevant intestinal release medium (pH 6.5) was carried out. Both μ-Diss profiler and UV imaging release experiments showed that sealing of microwell cavities with an Eudragit® layer prevented drug release in biorelevant gastric medium. An immediate release of the ASSF from coated microwells was observed in the intestinal medium. This pH-triggered release behavior demonstrates the future potential of PLLA microwells as a site-specific oral drug delivery system.
    Thumbnail

    Characterization and evaluation of β-glucan formulations as injectable implants for protein and peptide delivery.

    Jacobs, Simone; Bunt, Craig R; Wu, Zimei; Lehr, Claus-Michael; Rupenthal, Ilva D (2012-11)
    Injectable implants are biodegradable, syringeable formulations that are injected as liquids, but form a gel inside the body due to a change in pH, ions or temperature.
    Thumbnail

    Bioinspired Liposomes for Oral Delivery of Colistin to Combat Intracellular Infections by Salmonella enterica.

    Menina, Sara; Eisenbeis, Janina; Kamal, Mohamed Ashraf M; Koch, Marcus; Bischoff, Markus; Gordon, Sarah; Loretz, Brigitta; Lehr, Claus-Michael (Wiley-VCH, 2019-07-22)
    Bacterial invasion into eukaryotic cells and the establishment of intracellular infection has proven to be an effective means of resisting antibiotic action, as anti-infective agents commonly exhibit a poor permeability across the host cell membrane. Encapsulation of anti-infectives into nanoscaled delivery systems, such as liposomes, is shown to result in an enhancement of intracellular delivery. The aim of the current work is, therefore, to formulate colistin, a poorly permeable anti-infective, into liposomes suitable for oral delivery, and to functionalize these carriers with a bacteria-derived invasive moiety to enhance their intracellular delivery. Different combinations of phospholipids and cholesterol are explored to optimize liposomal drug encapsulation and stability in biorelevant media. These liposomes are then surface-functionalized with extracellular adherence protein (Eap), derived from Staphylococcus aureus. Treatment of HEp-2 and Caco-2 cells infected with Salmonella enterica using colistin-containing, Eap-functionalized liposomes resulted in a significant reduction of intracellular bacteria, in comparison to treatment with nonfunctionalized liposomes as well as colistin alone. This indicates that such bio-invasive carriers are able to facilitate intracellular delivery of colistin, as necessary for intracellular anti-infective activity. The developed Eap-functionalized liposomes, therefore, present a promising strategy for improving the therapy of intracellular infections.
    • 1
    • 2
    • 3
    • 4
    • . . .
    • 9
    DSpace software copyright © 2002-2019  DuraSpace
    Quick Guide | Kontakt | Feedback abschicken
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.