• Elevated free cholesterol in a p62 overexpression model of non-alcoholic steatohepatitis.

      Simon, Yvette; Kessler, Sonja M; Gemperlein, Katja; Bohle, Rainer M; Müller, Rolf; Haybaeck, Johannes; Kiemer, Alexandra K; Department of Pharmacy, Pharmaceutical Biology, Saarland University, 66123 Saarbrücken, Germany. (2014-12-21)
      To characterize how insulin-like growth factor 2 (IGF2) mRNA binding protein p62/IMP2-2 promotes steatohepatitis in the absence of dietary cholesterol.
    • Fatty acid elongation in non-alcoholic steatohepatitis and hepatocellular carcinoma.

      Kessler, Sonja M; Simon, Yvette; Gemperlein, Katja; Gianmoena, Kathrin; Cadenas, Cristina; Zimmer, Vincent; Pokorny, Juliane; Barghash, Ahmad; Helms, Volkhard; van Rooijen, Nico; et al. (2014)
      Non-alcoholic steatohepatitis (NASH) represents a risk factor for the development of hepatocellular carcinoma (HCC) and is characterized by quantitative and qualitative changes in hepatic lipids. Since elongation of fatty acids from C16 to C18 has recently been reported to promote both hepatic lipid accumulation and inflammation we aimed to investigate whether a frequently used mouse NASH model reflects this clinically relevant feature and whether C16 to C18 elongation can be observed in HCC development. Feeding mice a methionine and choline deficient diet to model NASH not only increased total hepatic fatty acids and cholesterol, but also distinctly elevated the C18/C16 ratio, which was not changed in a model of simple steatosis (ob/ob mice). Depletion of Kupffer cells abrogated both quantitative and qualitative methionine-and-choline deficient (MCD)-induced alterations in hepatic lipids. Interestingly, mimicking inflammatory events in early hepatocarcinogenesis by diethylnitrosamine-induced carcinogenesis (48 h) increased hepatic lipids and the C18/C16 ratio. Analyses of human liver samples from patients with NASH or NASH-related HCC showed an elevated expression of the elongase ELOVL6, which is responsible for the elongation of C16 fatty acids. Taken together, our findings suggest a detrimental role of an altered fatty acid pattern in the progression of NASH-related liver disease.
    • Insights into the complex biosynthesis of the leupyrrins in Sorangium cellulosum So ce690.

      Kopp, Maren; Irschik, Herbert; Gemperlein, Katja; Buntin, Kathrin; Meiser, Peter; Weissman, Kira J; Bode, Helge B; Müller, Rolf; Helmholtz Institute for Pharmaceutical Research, Helmholtz Center for Infection Research and Department of Pharmaceutical Biotechnology, Saarland University, PO Box 151150, 66041 Saarbrücken, Germany. (2011-05)
      The anti-fungal leupyrrins are secondary metabolites produced by several strains of the myxobacterium Sorangium cellulosum. These intriguing compounds incorporate an atypically substituted γ-butyrolactone ring, as well as pyrrole and oxazolinone functionalities, which are located within an unusual asymmetrical macrodiolide. Previous feeding studies revealed that this novel structure arises from the homologation of four distinct structural units, nonribosomally-derived peptide, polyketide, isoprenoid and a dicarboxylic acid, coupled with modification of the various building blocks. Here we have attempted to reconcile the biosynthetic pathway proposed on the basis of the feeding studies with the underlying enzymatic machinery in the S. cellulosum strain So ce690. Gene products can be assigned to many of the suggested steps, but inspection of the gene set provokes the reconsideration of several key transformations. We support our analysis by the reconstitution in vitro of the biosynthesis of the pyrrole carboxylic starter unit along with gene inactivation. In addition, this study reveals that a significant proportion of the genes for leupyrrin biosynthesis are located outside the core cluster, a 'split' organization which is increasingly characteristic of the myxobacteria. Finally, we report the generation of four novel deshydroxy leupyrrin analogues by genetic engineering of the pathway.
    • Metabolic and Biosynthetic Diversity in Marine Myxobacteria.

      Gemperlein, Katja; Zaburannyi, Nestor; Garcia, Ronald; La Clair, James J; Müller, Rolf; HIPS, Helmholtz-Institut für Pharmazeutische Forschung Saarland, Universitätscampus E8.1 66123 Saarbrücken, Germany. (2018-09-05)
      Prior to 2005, the vast majority of characterized myxobacteria were obtained from terrestrial habitats. Since then, several species of halotolerant and even obligate marine myxobacteria have been described. Chemical analyses of extracts from these organisms have confirmed their ability to produce secondary metabolites with unique chemical scaffolds. Indeed, new genera of marine-derived myxobacteria, particularly Enhygromyxa, have been shown to produce novel chemical scaffolds that differ from those observed in soil myxobacteria. Further studies have shown that marine sponges and terrestrial myxobacteria are capable of producing similar or even identical secondary metabolites, suggesting that myxobacterial symbionts may have been the true producers. Recent in silico analysis of the genome sequences available from six marine myxobacteria disclosed a remarkably versatile biosynthetic potential. With access to ever-advancing tools for small molecule and genetic evaluation, these studies suggest a bright future for expeditions into this yet untapped resource for secondary metabolites
    • The mRNA-binding Protein TTP/ZFP36 in Hepatocarcinogenesis and Hepatocellular Carcinoma.

      Kröhler, Tarek; Kessler, Sonja M; Hosseini, Kevan; List, Markus; Barghash, Ahmad; Patial, Sonika; Laggai, Stephan; Gemperlein, Katja; Haybaeck, Johannes; Müller, Rolf; et al. (MDPI, 2019-11-08)
      Hepatic lipid deposition and inflammation represent risk factors for hepatocellular carcinoma (HCC). The mRNA-binding protein tristetraprolin (TTP, gene name ZFP36) has been suggested as a tumor suppressor in several malignancies, but it increases insulin resistance. The aim of this study was to elucidate the role of TTP in hepatocarcinogenesis and HCC progression. Employing liver-specific TTP-knockout (lsTtp-KO) mice in the diethylnitrosamine (DEN) hepatocarcinogenesis model, we observed a significantly reduced tumor burden compared to wild-type animals. Upon short-term DEN treatment, modelling early inflammatory processes in hepatocarcinogenesis, lsTtp-KO mice exhibited a reduced monocyte/macrophage ratio as compared to wild-type mice. While short-term DEN strongly induced an abundance of saturated and poly-unsaturated hepatic fatty acids, lsTtp-KO mice did not show these changes. These findings suggested anti-carcinogenic actions of TTP deletion due to effects on inflammation and metabolism. Interestingly, though, investigating effects of TTP on different hallmarks of cancer suggested tumor-suppressing actions: TTP inhibited proliferation, attenuated migration, and slightly increased chemosensitivity. In line with a tumor-suppressing activity, we observed a reduced expression of several oncogenes in TTP-overexpressing cells. Accordingly, ZFP36 expression was downregulated in tumor tissues in three large human data sets. Taken together, this study suggests that hepatocytic TTP promotes hepatocarcinogenesis, while it shows tumor-suppressive actions during hepatic tumor progression.
    • Polyunsaturated fatty acid production by Yarrowia lipolytica employing designed myxobacterial PUFA synthases.

      Gemperlein, Katja; Dietrich, Demian; Kohlstedt, Michael; Zipf, Gregor; Bernauer, Hubert S; Wittmann, Christoph; Wenzel, Silke C; Müller, Rolf; HIPS, Helmholtz-Institut für Pharmazeutische Forschung Saarland, Universitätscampus E8.1 66123 Saarbrücken, Germany. (Nature publishing Group, 2019-09-06)
      Long-chain polyunsaturated fatty acids (LC-PUFAs), particularly the omega-3 LC-PUFAs eicosapentaenoic acid (EPA), docosapentaenoic acid (DPA), and docosahexaenoic acid (DHA), have been associated with beneficial health effects. Consequently, sustainable sources have to be developed to meet the increasing demand for these PUFAs. Here, we demonstrate the design and construction of artificial PUFA biosynthetic gene clusters (BGCs) encoding polyketide synthase-like PUFA synthases from myxobacteria adapted for the oleaginous yeast Yarrowia lipolytica. Genomic integration and heterologous expression of unmodified or hybrid PUFA BGCs yielded different yeast strains with specific LC-PUFA production profiles at promising yield and thus valuable for the biotechnological production of distinct PUFAs. Nutrient screening revealed a strong enhancement of PUFA production, when cells were phosphate limited. This represents, to the best of our knowledge, highest concentration of DHA (16.8 %) in total fatty acids among all published PUFA-producing Y. lipolytica strains.
    • Susceptibility of Different Mouse Wild Type Strains to Develop Diet-Induced NAFLD/AFLD-Associated Liver Disease.

      Fengler, Vera H I; Macheiner, Tanja; Kessler, Sonja M; Czepukojc, Beate; Gemperlein, Katja; Müller, Rolf; Kiemer, Alexandra K; Magnes, Christoph; Haybaeck, Johannes; Lackner, Carolin; et al. (2016)
      Although non-alcoholic and alcoholic fatty liver disease have been intensively studied, concerning pathophysiological mechanisms are still incompletely understood. This may be due to the use of different animal models and resulting model-associated variation. Therefore, this study aimed to compare three frequently used wild type mouse strains in their susceptibility to develop diet-induced features of non-alcoholic/alcoholic fatty liver disease. Fatty liver disease associated clinical, biochemical, and histological features in C57BL/6, CD-1, and 129Sv WT mice were induced by (i) high-fat diet feeding, (ii) ethanol feeding only, and (iii) the combination of high-fat diet and ethanol feeding. Hepatic and subcutaneous adipose lipid profiles were compared in CD-1 and 129Sv mice. Additionally hepatic fatty acid composition was determined in 129Sv mice. In C57BL/6 mice dietary regimens resulted in heterogeneous hepatic responses, ranging from pronounced steatosis and inflammation to a lack of any features of fatty liver disease. Liver-related serum biochemistry showed high deviations within the regimen groups. CD-1 mice did not exhibit significant changes in metabolic and liver markers and developed no significant steatosis or inflammation as a response to dietary regimens. Although 129Sv mice showed no weight gain, this strain achieved most consistent features of fatty liver disease, apparent from concentration alterations of liver-related serum biochemistry as well as moderate steatosis and inflammation as a result of all dietary regimens. Furthermore, the hepatic lipid profile as well as the fatty acid composition of 129Sv mice were considerably altered, upon feeding the different dietary regimens. Accordingly, diet-induced non-alcoholic/alcoholic fatty liver disease is most consistently promoted in 129Sv mice compared to C57BL/6 and CD-1 mice. As a conclusion, this study demonstrates the importance of genetic background of used mouse strains for modeling diet-induced non-alcoholic/alcoholic fatty liver disease.
    • Transient Hepatic Overexpression of Insulin-Like Growth Factor 2 Induces Free Cholesterol and Lipid Droplet Formation.

      Kessler, Sonja M; Laggai, Stephan; Van Wonterg, Elien; Gemperlein, Katja; Müller, Rolf; Haybaeck, Johannes; Vandenbroucke, Roosmarijn E; Ogris, Manfred; Libert, Claude; Kiemer, Alexandra K; et al. (2016)
      Although insulin-like growth factor 2 (IGF2) has been reported to be overexpressed in steatosis and steatohepatitis, a causal role of IGF2 in steatosis development remains elusive. Aim of our study was to decipher the role of IGF2 in steatosis development. Hydrodynamic gene delivery of an Igf2 plasmid used for transient Igf2 overexpression employing codon-optimized plasmid DNA resulted in a strong induction of hepatic Igf2 expression. The exogenously delivered Igf2 had no influence on endogenous Igf2 expression. The downstream kinase AKT was activated in Igf2 animals. Decreased ALT levels mirrored the cytoprotective effect of IGF2. Serum cholesterol was increased and sulfo-phospho-vanillin colorimetric assay confirmed lipid accumulation in Igf2-livers while no signs of inflammation were observed. Interestingly, hepatic cholesterol and phospholipids, determined by thin layer chromatography, and free cholesterol by filipin staining, were specifically increased. Lipid droplet (LD) size was not changed, but their number was significantly elevated. Furthermore, free cholesterol, which can be stored in LDs and has been reported to be critical for steatosis progression, was elevated in Igf2 overexpressing mice. Accordingly, Hmgcr/HmgCoAR was upregulated. To have a closer look at de novo lipid synthesis we investigated expression of the lipogenic transcription factor SREBF1 and its target genes. SREBF1 was induced and also SREBF1 target genes were slightly upregulated. Interestingly, the expression of Cpt1a, which is responsible for mitochondrial fatty acid oxidation, was induced. Hepatic IGF2 expression induces a fatty liver, characterized by increased cholesterol and phospholipids leading to accumulation of LDs. We therefore suggest a causal role for IGF2 in hepatic lipid accumulation.
    • Vitiosangium cumulatum gen. nov., sp. nov. and Vitiosangium subalbum sp. nov., novel soil myxobacteria from Nepal , and emended descriptions of genus Archangium and Angiococcus, and of Cystobacteraceae family.

      Awal, Ram Prasad; Garcia, Ronald; Gemperlein, Katja; Wink, Joachim; Kunwar, Bikram; Parajuli, Niranjan; Müller, Rolf; Helmholtz-Institue für Pharmazeutische Forschung Saarland (HIPS), Universitätscampus E8.1, 66123 Saarbrücken, Germany. (2017-01-28)
      Bacterial strains designated MCy10943T and MCy10944T were isolated in 2014 from dried Nepalese soil samples collected in 2013 from Phukot, Kalikot, Western Nepal and Godawari, Lalitpur, Central Nepal. The novel organisms showed typical myxobacterial growth characteristics which include swarming colony and fruiting body formation on solid surfaces, and a predatory ability to lyse microorganisms. The strains were aerobic, mesophilic, chemoheterotrophic and showed resistance to various antibiotics. The major cellular fatty acids common to both organisms were C17:0 2-OH, iso-C15:0, C16:1 and iso-C17:0. The G + C content of the genomic DNA was 72-75 mol %. Phylogenetic analysis showed that the strains belong to the family Cystobacteraceae, suborder Cystobacterineae, order Myxococcales. The 16S rRNA gene sequences of both strains showed 97-98 % similarity to Archangium gephyra DSM 2261T, Cystobacter violaceus DSM 14727T, and 96.7-97 % to Cystobacter fuscus DSM 2262T and Angiococcus disciformis DSM 52716T. Polyphasic taxonomic characterisation suggested that strains MCy10943T and MCy10944T represent two distinct species of a novel genus, for which the names Vitiosangium cumulatum and Vitiosangium subalbum are proposed. The type strain of Vitiosangium cumulatum is MCy10943T (=DSM 102952T =NCCB 100600T) while for Vitiosangium subalbum is MCy10944T (=DSM 102953T =NCCB 100601T). In addition, the genera Archangium and Angiococcus, and the family Cystobacteraceae is herewith emended.