• Inactivation of SACE_3446, a TetR family transcriptional regulator, stimulates erythromycin production in Saccharopolyspora erythraea.

      Wu, Hang; Wang, Yansheng; Yuan, Li; Mao, Yongrong; Wang, Weiwei; Zhu, Lin; Wu, Panpan; Fu, Chengzhang; Müller, Rolf; Weaver, David T; et al. (2016-03)
      Erythromycin A is a widely used antibiotic produced by Saccharopolyspora erythraea; however, its biosynthetic cluster lacks a regulatory gene, limiting the yield enhancement via regulation engineering of S. erythraea. Herein, six TetR family transcriptional regulators (TFRs) belonging to three genomic context types were individually inactivated in S. erythraea A226, and one of them, SACE_3446, was proved to play a negative role in regulating erythromycin biosynthesis. EMSA and qRT-PCR analysis revealed that SACE_3446 covering intact N-terminal DNA binding domain specifically bound to the promoter regions of erythromycin biosynthetic gene eryAI, the resistant gene ermE and the adjacent gene SACE_3447 (encoding a long-chain fatty-acid CoA ligase), and repressed their transcription. Furthermore, we explored the interaction relationships of SACE_3446 and previously identified TFRs (SACE_3986 and SACE_7301) associated with erythromycin production. Given demonstrated relatively independent regulation mode of SACE_3446 and SACE_3986 in erythromycin biosynthesis, we individually and concomitantly inactivated them in an industrial S. erythraea WB. Compared with WB, the WBΔ3446 and WBΔ3446Δ3986 mutants respectively displayed 36% and 65% yield enhancement of erythromycin A, following significantly elevated transcription of eryAI and ermE. When cultured in a 5 L fermentor, erythromycin A of WBΔ3446 and WBΔ3446Δ3986 successively reached 4095 mg/L and 4670 mg/L with 23% and 41% production improvement relative to WB. The strategy reported here will be useful to improve antibiotics production in other industrial actinomycete.
    • Interrogation of Streptomyces avermitilis for efficient production of avermectins

      Chen, Jinsong; Liu, Mei; Liu, Xueting; Miao, Jin; Fu, Chengzhang; Gao, Heyong; Müller, Rolf; Zhang, Qing; Zhang, Lixin; Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS),Saarland Universitätscampus E8.1, 66123 Saarbrücken, Germany. (2016-03)
    • Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking.

      Wang, Mingxun; Carver, Jeremy J; Phelan, Vanessa V; Sanchez, Laura M; Garg, Neha; Peng, Yao; Nguyen, Don Duy; Watrous, Jeramie; Kapono, Clifford A; Luzzatto-Knaan, Tal; et al. (2016-08-09)
      The potential of the diverse chemistries present in natural products (NP) for biotechnology and medicine remains untapped because NP databases are not searchable with raw data and the NP community has no way to share data other than in published papers. Although mass spectrometry (MS) techniques are well-suited to high-throughput characterization of NP, there is a pressing need for an infrastructure to enable sharing and curation of data. We present Global Natural Products Social Molecular Networking (GNPS; http://gnps.ucsd.edu), an open-access knowledge base for community-wide organization and sharing of raw, processed or identified tandem mass (MS/MS) spectrometry data. In GNPS, crowdsourced curation of freely available community-wide reference MS libraries will underpin improved annotations. Data-driven social-networking should facilitate identification of spectra and foster collaborations. We also introduce the concept of 'living data' through continuous reanalysis of deposited data.