• Connecting lysosomes and mitochondria - a novel role for lipid metabolism in cancer cell death.

      Bartel, Karin; Pein, Helmut; Popper, Bastian; Schmitt, Sabine; Janaki-Raman, Sudha; Schulze, Almut; Lengauer, Florian; Koeberle, Andreas; Werz, Oliver; Zischka, Hans; et al. (BMC, 2019-07-29)
      BACKGROUND: The understanding of lysosomes has been expanded in recent research way beyond their view as cellular trash can. Lysosomes are pivotal in regulating metabolism, endocytosis and autophagy and are implicated in cancer. Recently it was discovered that the lysosomal V-ATPase, which is known to induce apoptosis, interferes with lipid metabolism in cancer, yet the interplay between these organelles is poorly understood. METHODS: LC-MS/MS analysis was performed to investigate lipid distribution in cells. Cell survival and signaling pathways were analyzed by means of cell biological methods (qPCR, Western Blot, flow cytometry, CellTiter-Blue). Mitochondrial structure was analyzed by confocal imaging and electron microscopy, their function was determined by flow cytometry and seahorse measurements. RESULTS: Our data reveal that interfering with lysosomal function changes composition and subcellular localization of triacylglycerids accompanied by an upregulation of PGC1α and PPARα expression, master regulators of energy and lipid metabolism. Furthermore, cardiolipin content is reduced driving mitochondria into fission, accompanied by a loss of membrane potential and reduction in oxidative capacity, which leads to a deregulation in cellular ROS and induction of mitochondria-driven apoptosis. Additionally, cells undergo a metabolic shift to glutamine dependency, correlated with the fission phenotype and sensitivity to lysosomal inhibition, most prominent in Ras mutated cells. CONCLUSION: This study sheds mechanistic light on a largely uninvestigated triangle between lysosomes, lipid metabolism and mitochondrial function. Insight into this organelle crosstalk increases our understanding of mitochondria-driven cell death. Our findings furthermore provide a first hint on a connection of Ras pathway mutations and sensitivity towards lysosomal inhibitors.
    • Differential regulation of AMP-activated protein kinase in healthy and cancer cells explains why V-ATPase inhibition selectively kills cancer cells.

      Bartel, Karin; Müller, Rolf; von Schwarzenberg, Karin; HIPS, Helmholtz-Institut für Pharmazeutische Forschung Saarland, Universitätscampus E8.1 66123 Saarbrücken, Germany. (American Society for biochemistry and Molecular Biology, 2019-10-11)
      The cellular energy sensor AMP-activated protein kinase (AMPK) is a metabolic hub regulating various pathways involved in tumor metabolism. Here, we report that vacuolar H+-ATPase (V-ATPase) inhibition differentially affects regulation of AMPK in tumor and non-tumor cells and that this differential regulation contributes to the selectivity of V-ATPase inhibitors for tumor cells. In non-malignant cells, the V-ATPase inhibitor archazolid increased phosphorylation and lysosomal localization of AMPK. We noted that AMPK localization has a pro-survival role, as AMPK silencing decreased cellular growth rates. In contrast, in cancer cells, we found that AMPK is constitutively active and that archazolid does not affect its phosphorylation and localization. Moreover, V-ATPase-independent AMPK induction in the tumor cells protected them from archazolid-induced cytotoxicity, further underlining the role of AMPK as a pro-survival mediator. These observations indicate that AMPK regulation is uncoupled from V-ATPase activity in cancer cells and that this makes them more susceptible to cell death induction by V-ATPase inhibitors. In both tumor and healthy cells, V-ATPase inhibition induced a distinct metabolic regulatory cascade downstream of AMPK, affecting ATP and NADPH levels, glucose uptake, and reactive oxygen species (ROS) production. We could attribute the pro-survival effects to AMPK's ability to maintain redox homeostasis by inhibiting ROS production and maintaining NADPH levels. In summary, the results of our work indicate that V-ATPase inhibition has differential effects on AMPK-mediated metabolic regulation in cancer and healthy cells and explain the tumor-specific cytotoxicity of V-ATPase inhibition.
    • V-ATPase inhibition increases cancer cell stiffness and blocks membrane related Ras signaling - a new option for HCC therapy.

      Bartel, Karin; Winzi, Maria; Ulrich, Melanie; Koeberle, Andreas; Menche, Dirk; Werz, Oliver; Müller, Rolf; Guck, Jochen; Vollmar, Angelika M; von Schwarzenberg, Karin; et al. (2017-02-07)
      Hepatocellular carcinoma (HCC) is the fifth most frequent cancer worldwide and the third leading cause of cancer-related death. However, therapy options are limited leaving an urgent need to develop new strategies. Currently, targeting cancer cell lipid and cholesterol metabolism is gaining interest especially regarding HCC. High cholesterol levels support proliferation, membrane-related mitogenic signaling and increase cell softness, leading to tumor progression, malignancy and invasive potential. However, effective ways to target cholesterol metabolism for cancer therapy are still missing. The V-ATPase inhibitor archazolid was recently shown to interfere with cholesterol metabolism. In our study, we report a novel therapeutic potential of V-ATPase inhibition in HCC by altering the mechanical phenotype of cancer cells leading to reduced proliferative signaling. Archazolid causes cellular depletion of free cholesterol leading to an increase in cell stiffness and membrane polarity of cancer cells, while hepatocytes remain unaffected. The altered membrane composition decreases membrane fluidity and leads to an inhibition of membrane-related Ras signaling resulting decreased proliferation in vitro and in vivo. V-ATPase inhibition represents a novel link between cell biophysical properties and proliferative signaling selectively in malignant HCC cells, providing the basis for an attractive and innovative strategy against HCC.
    • The V-ATPase-inhibitor archazolid abrogates tumor metastasis via inhibition of endocytic activation of the Rho-GTPase Rac1.

      Wiedmann, Romina M; von Schwarzenberg, Karin; Palamidessi, Andrea; Schreiner, Laura; Kubisch, Rebekka; Liebl, Johanna; Schempp, Christina; Trauner, Dirk; Vereb, Gyorgy; Zahler, Stefan; et al. (2012-11-15)
      The abundance of the multimeric vacuolar ATP-dependent proton pump, V-ATPase, on the plasma membrane of tumor cells correlates with the invasiveness of the tumor cell, suggesting the involvement of V-ATPase in tumor metastasis. V-ATPase is hypothesized to create a proton efflux leading to an acidic pericellular microenvironment that promotes the activity of proinvasive proteases. An alternative, not yet explored possibility is that V-ATPase regulates the signaling machinery responsible for tumor cell migration. Here, we show that pharmacologic or genetic reduction of V-ATPase activity significantly reduces migration of invasive tumor cells in vitro. Importantly, the V-ATPase inhibitor archazolid abrogates tumor dissemination in a syngeneic mouse 4T1 breast tumor metastasis model. Pretreatment of cancer cells with archazolid impairs directional motility by preventing spatially restricted, leading edge localization of epidermal growth factor receptor (EGFR) as well as of phosphorylated Akt. Archazolid treatment or silencing of V-ATPase inhibited Rac1 activation, as well as Rac1-dependent dorsal and peripheral ruffles by inhibiting Rab5-mediated endocytotic/exocytotic trafficking of Rac1. The results indicate that archazolid effectively decreases metastatic dissemination of breast tumors by impairing the trafficking and spatially restricted activation of EGFR and Rho-GTPase Rac1, which are pivotal for directed movement of cells. Thus, our data reveals a novel mechanism underlying the role of V-ATPase in tumor dissemination.