• A central hydrophobic E1 region controls the pH range of hepatitis C virus membrane fusion and susceptibility to fusion inhibitors.

      Banda, Dominic H; Perin, Paula M; Brown, Richard J P; Todt, Daniel; Solodenko, Wladimir; Hoffmeyer, Patrick; Kumar Sahu, Kamlesh; Houghton, Michael; Meuleman, Philip; Müller, Rolf; et al. (Elsevier, 2019-06-01)
    • Chemical synthesis of tripeptide thioesters for the biotechnological incorporation into the myxobacterial secondary metabolite argyrin via mutasynthesis.

      Siebert, David C B; Sommer, Roman; Pogorevc, Domen; Hoffmann, Michael; Wenzel, Silke C; Müller, Rolf; Titz, Alexander; BRICS, Braunschweiger Zentrum für Systembiologie, Rebenring 56,38106 Braunschweig, Germany. (Beilstein Institut, 2019-01-01)
      The argyrins are secondary metabolites from myxobacteria with antibiotic activity against Pseudomonas aeruginosa. Studying their structure-activity relationship is hampered by the complexity of the chemical total synthesis. Mutasynthesis is a promising approach where simpler and fully synthetic intermediates of the natural product's biosynthesis can be biotechnologically incorporated. Here, we report the synthesis of a series of tripeptide thioesters as mutasynthons containing the native sequence with a dehydroalanine (Dha) Michael acceptor attached to a sarcosine (Sar) and derivatives. Chemical synthesis of the native sequence ᴅ-Ala-Dha-Sar thioester required revision of the sequential peptide synthesis into a convergent strategy where the thioester with sarcosine was formed before coupling to the Dha-containing dipeptide.
    • Chivosazole A Modulates Protein-Protein Interactions of Actin.

      Wang, Shuaijun; Gegenfurtner, Florian A; Crevenna, Alvaro H; Ziegenhain, Christoph; Kliesmete, Zane; Enard, Wolfgang; Müller, Rolf; Vollmar, Angelika M; Schneider, Sabine; Zahler, Stefan; et al. (American Society for Chemistry, 2019-07-26)
      Actin is a protein of central importance for many cellular key processes. It is regulated by local interactions with a large number of actin binding proteins (ABPs). Various compounds are known to either increase or decrease the polymerization dynamics of actin. However, no actin binding compound has been developed for clinical applications yet because of selectivity issues. We provide a crystal structure of the natural product chivosazole A (ChivoA) bound to actin and show that-in addition to inhibiting nucleation, polymerization, and severing of F-actin filaments-it selectively modulates binding of ABPs to G-actin: Although unphysiological actin dimers are induced by ChivoA, interaction with gelsolin, profilin, cofilin, and thymosin-β4 is inhibited. Moreover, ChivoA causes transcriptional effects differing from latrunculin B, an actin binder with a different binding site. Our data show that ChivoA and related compounds could serve as scaffolds for the development of actin binding molecules selectively targeting specific actin functions.
    • ClbR Is the Key Transcriptional Activator of Colibactin Gene Expression in Escherichia coli.

      Wallenstein, Alexander; Rehm, Nadine; Brinkmann, Marina; Selle, Martina; Bossuet-Greif, Nadège; Sauer, Daniel; Bunk, Boyke; Spröer, Cathrin; Wami, Haleluya Tesfaye; Homburg, Stefan; et al. (ASM, 2020-07-15)
      Colibactin is a nonribosomal peptide/polyketide hybrid natural product expressed by different members of the Enterobacteriaceae which can be correlated with induction of DNA double-strand breaks and interference with cell cycle progression in eukaryotes. Regulatory features of colibactin expression are only incompletely understood. We used Escherichia coli strain M1/5 as a model to investigate regulation of expression of the colibactin determinant at the transcriptional level and to characterize regulatory elements located within the colibactin pathogenicity island itself. We measured clbR transcription in vitro and observed that cultivation in defined minimal media led to increased colibactin expression relative to rich media. Transcription of clbR directly responds to iron availability. We also characterized structural DNA elements inside the colibactin determinant involved in ClbR-dependent regulation, i.e., ClbR binding sites and a variable number of tandem repeats located upstream of clbR We investigated the impact of clbR overexpression or deletion at the transcriptome and proteome levels. Moreover, we compared global gene regulation under these conditions with that occurring upon overexpression or deletion of clbQ, which affects the flux of colibactin production. Combining the results of the transcriptome and proteome analyses with indirect measurements of colibactin levels by cell culture assays and an approximate quantification of colibactin via the second product of colibactin cleavage from precolibactin, N-myristoyl-d-asparagine, we demonstrate that the variable number of tandem repeats plays a significant regulatory role in colibactin expression. We identify ClbR as the only transcriptional activator known so far that is specific and essential for efficient regulation of colibactin production.IMPORTANCE The nonribosomal peptide/polyketide hybrid colibactin can be considered a bacterial virulence factor involved in extraintestinal infection and also a procarcinogen. Nevertheless, and despite its genotoxic effect, colibactin expression can also inhibit bacterial or tumor growth and correlates with probiotic anti-inflammatory and analgesic properties. Although the biological function of this natural compound has been studied extensively, our understanding of the regulation of colibactin expression is still far from complete. We investigated in detail the role of regulatory elements involved in colibactin expression and in the growth conditions that promote colibactin expression. In this way, our data shed light on the regulatory mechanisms involved in colibactin expression and may support the expression and purification of this interesting nonribosomal peptide/polyketide hybrid for further molecular characterization.
    • Clinical Resistome Screening of 1,110 Escherichia coli Isolates Efficiently Recovers Diagnostically Relevant Antibiotic Resistance Biomarkers and Potential Novel Resistance Mechanisms.

      Volz, Carsten; Ramoni, Jonas; Beisken, Stephan; Galata, Valentina; Keller, Andreas; Plum, Achim; Posch, Andreas E; Müller, Rolf; HIPS, Helmholtz-Institut für Pharmazeutische Forschung Saarland, Universitätscampus E8.1 66123 Saarbrücken, Germany. (Frontiers, 2019-01-01)
      Multidrug-resistant pathogens represent one of the biggest global healthcare challenges. Molecular diagnostics can guide effective antibiotics therapy but relies on validated, predictive biomarkers. Here we present a novel, universally applicable workflow for rapid identification of antimicrobial resistance (AMR) biomarkers from clinical Escherichia coli isolates and quantitatively evaluate the potential to recover causal biomarkers for observed resistance phenotypes. For this, a metagenomic plasmid library from 1,110 clinical E. coli isolates was created and used for high-throughput screening to identify biomarker candidates against Tobramycin (TOB), Ciprofloxacin (CIP), and Trimethoprim-Sulfamethoxazole (TMP-SMX). Identified candidates were further validated in vitro and also evaluated in silico for their diagnostic performance based on matched genotype-phenotype data. AMR biomarkers recovered by the metagenomics screening approach mechanistically explained 77% of observed resistance phenotypes for Tobramycin, 76% for Trimethoprim-Sulfamethoxazole, and 20% Ciprofloxacin. Sensitivity for Ciprofloxacin resistance detection could be improved to 97% by complementing results with AMR biomarkers that are undiscoverable due to intrinsic limitations of the workflow. Additionally, when combined in a multiplex diagnostic in silico panel, the identified AMR biomarkers reached promising positive and negative predictive values of up to 97 and 99%, respectively. Finally, we demonstrate that the developed workflow can be used to identify potential novel resistance mechanisms.
    • A combination of genetics and microbiota influences the severity of the obesity phenotype in diet-induced obesity.

      Smoczek, Margarethe; Vital, Marius; Wedekind, Dirk; Basic, Marijana; Zschemisch, Nils-Holger; Pieper, Dietmar H; Siebert, Anja; Bleich, Andre; Buettner, Manuela; HIPS, Helmholtz-Institut für Pharmazeutische Forschung Saarland, Universitätscampus E8.1 66123 Saarbrücken, Germany. (NPG, 2020-04-09)
      Obesity has emerged as a major global health problem and is associated with various diseases, such as metabolic syndrome, type 2 diabetes mellitus, and cardiovascular diseases. The inbred C57BL/6 mouse strain is often used for various experimental investigations, such as metabolic research. However, over time, genetically distinguishable C57BL/6 substrains have evolved. The manifestation of genetic alterations has resulted in behavioral and metabolic differences. In this study, a comparison of diet-induced obesity in C57BL/6JHanZtm, C57BL/6NCrl and C57BL/6 J mice revealed several metabolic and immunological differences such as blood glucose level and cytokine expression, respectively, among these C57BL/6 substrains. For example, C57BL/6NCrl mice developed the most pronounced adiposity, whereas C57BL/6 J mice showed the highest impairment in glucose tolerance. Moreover, our results indicated that the immunological phenotype depends on the intestinal microbiota, as the cell subset composition of the colon was similar in obese ex-GF B6NRjB6JHanZtm and obese B6JHanZtm mice. Phenotypic differences between C57BL/6 substrains are caused by a complex combination of genetic and microbial alterations. Therefore, in performing metabolic research, considering substrain-specific characteristics, which can influence the course of study, is important. Moreover, for unbiased comparison of data, the entire strain name should be shared with the scientific community.
    • Comparative Target Analysis of Chlorinated Biphenyl Antimicrobials Highlights MenG as a Molecular Target of Triclocarban.

      Macsics, Robert; Hackl, Mathias W; Fetzer, Christian; Mostert, Dietrich; Bender, Jennifer; Layer, Franziska; Sieber, Stephan A; HIPS, Helmholtz-Institut für Pharmazeutische Forschung Saarland, Universitätscampus E8.1 66123 Saarbrücken, Germany. (2020-08-03)
      Triclocarban (TCC), a formerly used disinfectant, kills bacteria via an unknown mechanism of action. A structural hallmark is its N,N'-diaryl urea motif, which is also present in other antibiotics, including the recently reported small molecule PK150. We show here that, like PK150, TCC exhibits an inhibitory effect on Staphylococcus aureus menaquinone metabolism via inhibition of the biosynthesis protein demethylmenaquinone methyltransferase (MenG). However, the activity spectrum (MIC90) of TCC across a broad range of multidrug-resistant staphylococcus and enterococcus strains was much narrower than that of PK150. Accordingly, TCC did not cause an overactivation of signal peptidase SpsB, a hallmark of the PK150 mode of action. Furthermore, we were able to rule out inhibition of FabI, a confirmed target of the diaryl ether antibiotic triclosan (TCS). Differences in the target profiles of TCC and TCS were further investigated by proteomic analysis, showing complex but rather distinct changes in the protein expression profile of S. aureus Downregulation of the arginine deiminase pathway provided additional evidence for an effect on bacterial energy metabolism by TCC.IMPORTANCE TCC's widespread use as an antimicrobial agent has made it a ubiquitous environmental pollutant despite its withdrawal due to ecological and toxicological concerns. With its antibacterial mechanism of action still being unknown, we undertook a comparative target analysis between TCC, PK150 (a recently discovered antibacterial compound with structural resemblance to TCC), and TCS (another widely employed chlorinated biphenyl antimicrobial) in the bacterium Staphylococcus aureus We show that there are distinct differences in each compound's mode of action, but also identify a shared target between TCC and PK150, the interference with menaquinone metabolism by inhibition of MenG. The prevailing differences, however, which also manifest in a remarkably better broad-spectrum activity of PK150, suggest that even high levels of TCC or TCS resistance observed by continuous environmental exposure may not affect the potential of PK150 or related N,N'-diaryl urea compounds as new antibiotic drug candidates against multidrug-resistant infections.
    • Concepts and Methods to Access Novel Antibiotics from Actinomycetes.

      Hug, Joachim J; Bader, Chantal D; Remškar, Maja; Cirnski, Katarina; Müller, Rolf (MPDI, 2018-05-22)
      Actinomycetes have been proven to be an excellent source of secondary metabolites for more than half a century. Exhibiting various bioactivities, they provide valuable approved drugs in clinical use. Most microorganisms are still untapped in terms of their capacity to produce secondary metabolites, since only a small fraction can be cultured in the laboratory. Thus, improving cultivation techniques to extend the range of secondary metabolite producers accessible under laboratory conditions is an important first step in prospecting underexplored sources for the isolation of novel antibiotics. Currently uncultured actinobacteria can be made available by bioprospecting extreme or simply habitats other than soil. Furthermore, bioinformatic analysis of genomes reveals most producers to harbour many more biosynthetic gene clusters than compounds identified from any single strain, which translates into a silent biosynthetic potential of the microbial world for the production of yet unknown natural products. This review covers discovery strategies and innovative methods recently employed to access the untapped reservoir of natural products. The focus is the order of actinomycetes although most approaches are similarly applicable to other microbes. Advanced cultivation methods, genomics- and metagenomics-based approaches, as well as modern metabolomics-inspired methods are highlighted to emphasise the interplay of different disciplines to improve access to novel natural products.
    • Connecting lysosomes and mitochondria - a novel role for lipid metabolism in cancer cell death.

      Bartel, Karin; Pein, Helmut; Popper, Bastian; Schmitt, Sabine; Janaki-Raman, Sudha; Schulze, Almut; Lengauer, Florian; Koeberle, Andreas; Werz, Oliver; Zischka, Hans; et al. (BMC, 2019-07-29)
      BACKGROUND: The understanding of lysosomes has been expanded in recent research way beyond their view as cellular trash can. Lysosomes are pivotal in regulating metabolism, endocytosis and autophagy and are implicated in cancer. Recently it was discovered that the lysosomal V-ATPase, which is known to induce apoptosis, interferes with lipid metabolism in cancer, yet the interplay between these organelles is poorly understood. METHODS: LC-MS/MS analysis was performed to investigate lipid distribution in cells. Cell survival and signaling pathways were analyzed by means of cell biological methods (qPCR, Western Blot, flow cytometry, CellTiter-Blue). Mitochondrial structure was analyzed by confocal imaging and electron microscopy, their function was determined by flow cytometry and seahorse measurements. RESULTS: Our data reveal that interfering with lysosomal function changes composition and subcellular localization of triacylglycerids accompanied by an upregulation of PGC1α and PPARα expression, master regulators of energy and lipid metabolism. Furthermore, cardiolipin content is reduced driving mitochondria into fission, accompanied by a loss of membrane potential and reduction in oxidative capacity, which leads to a deregulation in cellular ROS and induction of mitochondria-driven apoptosis. Additionally, cells undergo a metabolic shift to glutamine dependency, correlated with the fission phenotype and sensitivity to lysosomal inhibition, most prominent in Ras mutated cells. CONCLUSION: This study sheds mechanistic light on a largely uninvestigated triangle between lysosomes, lipid metabolism and mitochondrial function. Insight into this organelle crosstalk increases our understanding of mitochondria-driven cell death. Our findings furthermore provide a first hint on a connection of Ras pathway mutations and sensitivity towards lysosomal inhibitors.
    • Corallopyronin A for short-course anti-wolbachial, macrofilaricidal treatment of filarial infections.

      Schiefer, Andrea; Hübner, Marc P; Krome, Anna; Lämmer, Christine; Ehrens, Alexandra; Aden, Tilman; Koschel, Marianne; Neufeld, Helene; Chaverra-Muñoz, Lillibeth; Jansen, Rolf; et al. (PLOS, 2020-12-07)
      Current efforts to eliminate the neglected tropical diseases onchocerciasis and lymphatic filariasis, caused by the filarial nematodes Onchocerca volvulus and Wuchereria bancrofti or Brugia spp., respectively, are hampered by lack of a short-course macrofilaricidal-adult-worm killing-treatment. Anti-wolbachial antibiotics, e.g. doxycycline, target the essential Wolbachia endosymbionts of filariae and are a safe prototype adult-worm-sterilizing and macrofilaricidal regimen, in contrast to standard treatments with ivermectin or diethylcarbamazine, which mainly target the microfilariae. However, treatment regimens of 4-5 weeks necessary for doxycycline and contraindications limit its use. Therefore, we tested the preclinical anti-Wolbachia drug candidate Corallopyronin A (CorA) for in vivo efficacy during initial and chronic filarial infections in the Litomosoides sigmodontis rodent model. CorA treatment for 14 days beginning immediately after infection cleared >90% of Wolbachia endosymbionts from filariae and prevented development into adult worms. CorA treatment of patently infected microfilaremic gerbils for 14 days with 30 mg/kg twice a day (BID) achieved a sustained reduction of >99% of Wolbachia endosymbionts from adult filariae and microfilariae, followed by complete inhibition of filarial embryogenesis resulting in clearance of microfilariae. Combined treatment of CorA and albendazole, a drug currently co-administered during mass drug administrations and previously shown to enhance efficacy of anti-Wolbachia drugs, achieved microfilarial clearance after 7 days of treatment at a lower BID dose of 10 mg/kg CorA, a Human Equivalent Dose of 1.4 mg/kg. Importantly, this combination led to a significant reduction in the adult worm burden, which has not yet been published with other anti-Wolbachia candidates tested in this model. In summary, CorA is a preclinical candidate for filariasis, which significantly reduces treatment times required to achieve sustained Wolbachia depletion, clearance of microfilariae, and inhibition of embryogenesis. In combination with albendazole, CorA is robustly macrofilaricidal after 7 days of treatment and fulfills the Target Product Profile for a macrofilaricidal drug.
    • Correlating chemical diversity with taxonomic distance for discovery of natural products in myxobacteria.

      Hoffmann, Thomas; Krug, Daniel; Bozkurt, Nisa; Duddela, Srikanth; Jansen, Rolf; Garcia, Ronald; Gerth, Klaus; Steinmetz, Heinrich; Müller, Rolf; HIPS, Helmholtz-Institut für pharmazeutische Forschung Saarland, Universitätscampus 8.1, 66123 Saarbrücken, Germany. (2018-02-23)
      Some bacterial clades are important sources of novel bioactive natural products. Estimating the magnitude of chemical diversity available from such a resource is complicated by issues including cultivability, isolation bias and limited analytical data sets. Here we perform a systematic metabolite survey of ~2300 bacterial strains of the order Myxococcales, a well-established source of natural products, using mass spectrometry. Our analysis encompasses both known and previously unidentified metabolites detected under laboratory cultivation conditions, thereby enabling large-scale comparison of production profiles in relation to myxobacterial taxonomy. We find a correlation between taxonomic distance and the production of distinct secondary metabolite families, further supporting the idea that the chances of discovering novel metabolites are greater by examining strains from new genera rather than additional representatives within the same genus. In addition, we report the discovery and structure elucidation of rowithocin, a myxobacterial secondary metabolite featuring an uncommon phosphorylated polyketide scaffold.
    • Covalent Lectin Inhibition and Application in Bacterial Biofilm Imaging.

      Wagner, Stefanie; Hauck, Dirk; Hoffmann, Michael; Sommer, Roman; Joachim, Ines; Müller, Rolf; Imberty, Anne; Varrot, Annabelle; Titz, Alexander; HIPS, Helmholtz-Institut für pharmazeutische Forchung Saarland, Universitätscampus E8.1, 66123 Saarbrücken, Germany. (2017-09-28)
      Biofilm formation by pathogenic bacteria is a hallmark of chronic infections. In many cases, lectins play key roles in establishing biofilms. The pathogen Pseudomonas aeruginosa often exhibiting various drug resistances employs its lectins LecA and LecB as virulence factors and biofilm building blocks. Therefore, inhibition of the function of these proteins is thought to have potential in developing "pathoblockers" preventing biofilm formation and virulence. A covalent lectin inhibitor specific to a carbohydrate binding site is described for the first time. Its application in the LecA-specific in vitro imaging of biofilms formed by P. aeruginosa is also reported.
    • Crystal Structure of the HMG-CoA Synthase MvaS from the Gram-Negative Bacterium Myxococcus xanthus.

      Bock, Tobias; Kasten, Janin; Müller, Rolf; Blankenfeldt, Wulf; Helmholtz Centre for infection research, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2016-07-01)
      A critical step in bacterial isoprenoid production is the synthesis of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) catalyzed by HMG-CoA synthase (HMGCS). In myxobacteria, this enzyme is also involved in a recently discovered alternative and acetyl-CoA-dependent isovaleryl CoA biosynthesis pathway. Here we present crystal structures of MvaS, the HMGCS from Myxococcus xanthus, in complex with CoA and acetylated active site Cys115, with the second substrate acetoacetyl CoA and with the product of the condensation reaction, 3-hydroxy-3-methylglutaryl CoA. With these structures, we show that MvaS uses the common HMGCS enzymatic mechanism and provide evidence that dimerization plays a role in the formation and stability of the active site. Overall, MvaS shows features typical of the eukaryotic HMGCS and exhibits differences from homologues from Gram-positive bacteria. This study provides insights into myxobacterial alternative isovaleryl CoA biosynthesis and thereby extends the toolbox for the biotechnological production of renewable fuel and chemicals.
    • Cystobactamid 507: Concise Synthesis, Mode of Action and Optimization toward More Potent Antibiotics.

      Elgaher, Walid A M; Hamed, Mostafa M; Baumann, Sascha; Herrmann, Jennifer; Siebenbürger, Lorenz; Krull, Jana; Cirnski, Katarina; Kirschning, Andreas; Brönstrup, Mark; Müller, Rolf; et al. (Wiley-VCH, 2020-01-26)
      Lack of new antibiotics and increasing antimicrobial resistance are the main concerns of healthcare community nowadays, which necessitate the search for novel antibacterial agents. Recently, we discovered the cystobactamids - a novel natural class of antibiotics with broad-spectrum antibacterial activity. In this work, we describe a concise total synthesis of cystobactamid 507, the identification of the bioactive conformation using non-covalently bonded rigid analogs, the first structure–activity relationship (SAR) study for cystobactamid 507 leading to new analogs with high metabolic stability, superior topoisomerase IIA inhibition, antibacterial activity and, importantly, stability toward the resistant factor AlbD. Deeper insight into the mode of action revealed that the cystobactamids employ DNA minor groove binding as part of the drug–target interaction without showing significant intercalation. By designing a new analog of cystobactamid 919-2 we finally demonstrated that these findings could be further exploited to obtain more potent hexapeptides against Gram-negative bacteria.
    • Cystobactamids 920-1 and 920-2: Assignment of the Constitution and Relative Configuration by Total Synthesis.

      Planke, Therese; Moreno, María; Hüttel, Stephan; Fohrer, Jörg; Gille, Franziska; Norris, Matthew D; Siebke, Maik; Wang, Liangliang; Müller, Rolf; Kirschning, Andreas; et al. (ACS Publications, 2019-03-01)
      Total synthesis of cystobactamid 920-1 and its epimer has allowed an unambiguous assignment of the relative and absolute configuration of the natural product. A careful structural analysis of each isomer using both NMR and computational techniques also prompted a constitutional revision of the structures originally reported for cystobactamids 920-1 and 920-2, and has provided further insight into the unique conformational preferences of the cystobactamid family
    • Cytotoxic fatty acid amides from Xenorhabdus.

      Proschak, Anna; Schultz, Katharina; Herrmann, Jennifer; Dowling, Andrea J; Brachmann, Alexander O; ffrench-Constant, Richard; Müller, Rolf; Bode, Helge B (2011-09-05)
    • The Cytotoxic Natural Product Vioprolide A Targets Nucleolar Protein 14, Which Is Essential for Ribosome Biogenesis.

      Kirsch, Volker C; Orgler, Christina; Braig, Simone; Jeremias, Irmela; Auerbach, David; Müller, Rolf; Vollmar, Angelika M; Sieber, Stephan A; HIPS, Helmholtz-Institut für Pharmazeutische Forschung Saarland, Universitätscampus E8.1 66123 Saarbrücken, Germany. (Wiley-VCH, 2020-01-20)
      Novel targets are needed for treatment of devastating diseases such as cancer. For decades, natural products have guided innovative therapies by addressing diverse pathways. Inspired by the potent cytotoxic bioactivity of myxobacterial vioprolides A-D, we performed in-depth studies on their mode of action. Based on its prominent potency against human acute lymphoblastic leukemia (ALL) cells, we conducted thermal proteome profiling (TPP) and deciphered the target proteins of the most active derivative vioprolide A (VioA) in Jurkat cells. Nucleolar protein 14 (NOP14), which is essential in ribosome biogenesis, was confirmed as a specific target of VioA by a suite of proteomic and biological follow-up experiments. Given its activity against ALL cells compared to healthy lymphocytes, VioA exhibits unique therapeutic potential for anticancer therapy through a novel mode of action
    • Differential regulation of AMP-activated protein kinase in healthy and cancer cells explains why V-ATPase inhibition selectively kills cancer cells.

      Bartel, Karin; Müller, Rolf; von Schwarzenberg, Karin; HIPS, Helmholtz-Institut für Pharmazeutische Forschung Saarland, Universitätscampus E8.1 66123 Saarbrücken, Germany. (American Society for biochemistry and Molecular Biology, 2019-10-11)
      The cellular energy sensor AMP-activated protein kinase (AMPK) is a metabolic hub regulating various pathways involved in tumor metabolism. Here, we report that vacuolar H+-ATPase (V-ATPase) inhibition differentially affects regulation of AMPK in tumor and non-tumor cells and that this differential regulation contributes to the selectivity of V-ATPase inhibitors for tumor cells. In non-malignant cells, the V-ATPase inhibitor archazolid increased phosphorylation and lysosomal localization of AMPK. We noted that AMPK localization has a pro-survival role, as AMPK silencing decreased cellular growth rates. In contrast, in cancer cells, we found that AMPK is constitutively active and that archazolid does not affect its phosphorylation and localization. Moreover, V-ATPase-independent AMPK induction in the tumor cells protected them from archazolid-induced cytotoxicity, further underlining the role of AMPK as a pro-survival mediator. These observations indicate that AMPK regulation is uncoupled from V-ATPase activity in cancer cells and that this makes them more susceptible to cell death induction by V-ATPase inhibitors. In both tumor and healthy cells, V-ATPase inhibition induced a distinct metabolic regulatory cascade downstream of AMPK, affecting ATP and NADPH levels, glucose uptake, and reactive oxygen species (ROS) production. We could attribute the pro-survival effects to AMPK's ability to maintain redox homeostasis by inhibiting ROS production and maintaining NADPH levels. In summary, the results of our work indicate that V-ATPase inhibition has differential effects on AMPK-mediated metabolic regulation in cancer and healthy cells and explain the tumor-specific cytotoxicity of V-ATPase inhibition.
    • Direct cloning and heterologous expression of the salinomycin biosynthetic gene cluster from Streptomyces albus DSM41398 in Streptomyces coelicolor A3(2).

      Yin, Jia; Hoffmann, Michael; Bian, Xiaoying; Tu, Qiang; Yan, Fu; Xia, Liqiu; Ding, Xuezhi; Stewart, A Francis; Müller, Rolf; Fu, Jun; et al. (2015)
      Linear plus linear homologous recombination-mediated recombineering (LLHR) is ideal for obtaining natural product biosynthetic gene clusters from pre-digested bacterial genomic DNA in one or two steps of recombineering. The natural product salinomycin has a potent and selective activity against cancer stem cells and is therefore a potential anti-cancer drug. Herein, we separately isolated three fragments of the salinomycin gene cluster (salO-orf18) from Streptomyces albus (S. albus) DSM41398 using LLHR and assembled them into intact gene cluster (106 kb) by Red/ET and expressed it in the heterologous host Streptomyces coelicolor (S. coelicolor) A3(2). We are the first to report a large genomic region from a Gram-positive strain has been cloned using LLHR. The successful reconstitution and heterologous expression of the salinomycin gene cluster offer an attractive system for studying the function of the individual genes and identifying novel and potential analogues of complex natural products in the recipient strain.
    • Discovery of Novel Latency-Associated Nuclear Antigen Inhibitors as Antiviral Agents Against Kaposi's Sarcoma-Associated Herpesvirus.

      Kirsch, Philine; Jakob, Valentin; Elgaher, Walid A M; Walt, Christine; Oberhausen, Kevin; Schulz, Thomas F; Empting, Martin; HIPS, Helmholtz-Institut für Pharmazeutische Forschung Saarland, Universitätscampus E8.1 66123 Saarbrücken, Germany.;HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (American Chemical Society (ACS), 2020-01-24)
      With the aim to develop novel antiviral agents against Kaposi's Sarcoma Herpesvirus (KSHV), we are targeting the latency-associated nuclear antigen (LANA). This protein plays an important role in viral genome maintenance during latent infection. LANA has the ability to tether the viral genome to the host nucleosomes and, thus, ensures latent persistence of the viral genome in the host cells. By inhibition of the LANA-DNA interaction, we seek to eliminate or reduce the load of the viral DNA in the host. To achieve this goal, we screened our in-house library using a dedicated fluorescence polarization (FP)-based competition assay, which allows for the quantification of LANA-DNA-interaction inhibition by small organic molecules. We successfully identified three different compound classes capable of disrupting this protein-nucleic acid interaction. We characterized these compounds by IC50 dose-response evaluation and confirmed the compound-LANA interaction using surface plasmon resonance (SPR) spectroscopy. Furthermore, two of the three hit scaffolds showed only marginal cytotoxicity in two human cell lines. Finally, we conducted STD-NMR competition experiments with our new hit compounds and a previously described fragment-sized inhibitor. Based on these results, future compound linking approaches could serve as a promising strategy for further optimization studies in order to generate highly potent KSHV inhibitors.