• Disruption of Coronin 1 Signaling in T Cells Promotes Allograft Tolerance while Maintaining Anti-Pathogen Immunity.

      Jayachandran, Rajesh; Gumienny, Aleksandra; Bolinger, Beatrice; Ruehl, Sebastian; Lang, Mathias Jakob; Fucile, Geoffrey; Mazumder, Saumyabrata; Tchang, Vincent; Woischnig, Anne-Kathrin; Stiess, Michael; et al. (Elsevier (Cell Press), 2019-01-02)
      The ability of the immune system to discriminate self from non-self is essential for eradicating microbial pathogens but is also responsible for allograft rejection. Whether it is possible to selectively suppress alloresponses while maintaining anti-pathogen immunity remains unknown. We found that mice deficient in coronin 1, a regulator of naive T cell homeostasis, fully retained allografts while maintaining T cell-specific responses against microbial pathogens. Mechanistically, coronin 1-deficiency increased cyclic adenosine monophosphate (cAMP) concentrations to suppress allo-specific T cell responses. Costimulation induced on microbe-infected antigen presenting cells was able to overcome cAMP-mediated immunosuppression to maintain anti-pathogen immunity. In vivo pharmacological modulation of this pathway or a prior transfer of coronin 1-deficient T cells actively suppressed allograft rejection. These results define a coronin 1-dependent regulatory axis in T cells important for allograft rejection and suggest that modulation of this pathway may be a promising approach to achieve long-term acceptance of mismatched allografts.