• Age-related susceptibility to Streptococcus pyogenes infection in mice: underlying immune dysfunction and strategy to enhance immunity.

      Goldmann, Oliver; Lehne, Sabine; Medina, Eva; Infection Immunology Research Group, Department of Microbial Pathogenesis, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, D-38124 Braunschweig, Germany. (2010-04)
      Epidemiological studies have shown that the elderly are at higher risk of severe Streptococcus pyogenes infections. In this study, we used a mouse model that displays the age-related loss of resistance to S. pyogenes infection seen in humans to investigate the impaired immune mechanism underlying the age-associated susceptibility to this pathogen. Young (2-3 months old) and aged (>20 months old) BALB/c mice were subcutaneously or intravenously inoculated with S. pyogenes and their capacity to control infection was compared. Aged mice showed faster progression of disease, earlier morbidity, and increased mortality when compared with young animals. Since macrophages are critical for host defence against S. pyogenes, we investigated whether susceptibility of aged mice may be due to an age-associated decline in the functionality of these cells. Our results showed that macrophages from aged mice were as capable as those from young animals to uptake and kill S. pyogenes, but the number of resident tissue macrophages was significantly reduced in the aged host. Treatment of aged mice with macrophage colony-stimulating factor (M-CSF) significantly increased the number of resident macrophages and improved their response to infection. Our results indicate that treatment with M-CSF can restore, at least in part, the mechanisms affected by immunosenescence and enhance the natural resistance of aged mice to infection with S. pyogenes.
    • Contribution of interleukin-6/gp 130 signaling in hepatocytes to the inflammatory response in mice infected with Streptococcus pyogenes.

      Klein, Christian; Medina, Eva; Sander, Leif; Dierssen, Uta; Roskams, Tania; Mueller, Werner; Trautwein, Christian; Goldmann, Oliver; Medizinische Klinik III, University Hospital Aachen, Rheinisch-Westfalisch Techniche Hochschule Aachen, Aachen, Germany. christian.klein@dife.de (2007-09-01)
      BACKGROUND: Sepsis and septic shock caused by gram-positive bacteria have become increasingly frequent clinical problems. These conditions are accompanied by an overwhelming inflammation in which the liver plays a central role as a source and target of inflammatory mediators. Sepsis is still associated with high mortality rates, and new intervention strategies directed at ameliorating the extent of the inflammatory reaction are strongly needed. Here, we investigated whether blockage of the transducer gp130, a receptor involved in the regulation of the inflammatory response, might be useful in the treatment of experimental gram-positive sepsis. METHODS: An experimental model of gram-positive sepsis was used in which liver-specific gp130-deficient mice (FVB/n alfpCre+ gp130(LoxP/LoxP)) and wild-type mice (FVB/n gp130(LoxP/LoxP)) were intravenously infected with Streptococcus pyogenes. The following parameters were monitored: mortality, bacterial loads in systemic organs, serum inflammatory cytokine levels, and organ damage. RESULTS: We show that infected gp130-deficient mice survived significantly longer, had lower bacterial loads, and developed organ damage more slowly than infected wild-type mice. Furthermore, levels of interferon- gamma , interleukin-6, and the chemokine cytokine-induced neutrophil chemoattractant were significantly lower in gp130-deficient mice than in wild-type mice. Histopathological examination of livers showed lower amounts of neutrophil infiltration, apoptosis, and tissue damage in infected gp130-deficient mice than in wild-type mice. CONCLUSION: Our results demonstrate that the gp130 receptor is involved in the regulation of inflammation during gram-positive sepsis and that blockage of gp130 signaling in hepatocytes could constitute a novel target for adjunctive therapy in patients with sepsis.
    • High-resolution transcriptomic analysis of the adaptive response of Staphylococcus aureus during acute and chronic phases of osteomyelitis.

      Szafranska, Anna K; Oxley, Andrew P A; Chaves-Moreno, Diego; Horst, Sarah A; Roßlenbroich, Steffen; Peters, Georg; Goldmann, Oliver; Rohde, Manfred; Sinha, Bhanu; Pieper, Dietmar H; et al. (2014)
      Osteomyelitis is a difficult-to-eradicate bone infection typically caused by Staphylococcus aureus. In this study, we investigated the in vivo transcriptional adaptation of S. aureus during bone infection. To this end, we determined the transcriptome of S. aureus during the acute (day 7) and chronic (day 28) phases of experimental murine osteomyelitis using RNA sequencing (RNA-Seq). We identified a total of 180 genes significantly more highly expressed by S. aureus during acute or chronic in vivo infection than under in vitro growth conditions. These genes encoded proteins involved in gluconeogenesis, proteolysis of host proteins, iron acquisition, evasion of host immune defenses, and stress responses. At the regulatory level, sarA and -R and saeR and -S as well as the small RNA RsaC were predominantly expressed by S. aureus during in vivo infection. Only nine genes, including the genes encoding the arginine deiminase (ADI) pathway and those involved in the stringent response, were significantly more highly expressed by S. aureus during the chronic than the acute stage of infection. Analysis by quantitative reverse transcription-PCR (qRT-PCR) of a subset of these in vivo-expressed genes in clinical specimens yielded the same results as those observed in the murine system. Collectively, our results show that during acute osteomyelitis, S. aureus induced the transcription of genes that mediate metabolic adaptation, immune evasion, and replication. During the chronic phase, however, S. aureus switched its transcriptional response from a proliferative to a persistence mode, probably driven by the severe deficiency in nutrient supplies. Interfering with the survival strategies of S. aureus during chronic infection could lead to more effective treatments.
    • Immune recognition of Streptococcus pyogenes by dendritic cells.

      Loof, Torsten G; Goldmann, Oliver; Medina, Eva; Infection Immunology Research Group, Department of Microbial Pathogenesis, Helmholtz Center for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany. (2008-06)
      Streptococcus pyogenes is one of the most frequent human pathogens. Recent studies have identified dendritic cells (DCs) as important contributors to host defense against S. pyogenes. The objective of this study was to identify the receptors involved in immune recognition of S. pyogenes by DCs. To determine whether Toll-like receptors (TLRs) were involved in DC sensing of S. pyogenes, we evaluated the response of bone marrow-derived DCs obtained from mice deficient in MyD88, an adapter molecule used by almost all TLRs, following S. pyogenes stimulation. Despite the fact that MyD88(-/-) DCs did not differ from wild-type DCs in the ability to internalize and kill S. pyogenes, the up-regulation of maturation markers, such as CD40, CD80, and CD86, and the production of inflammatory cytokines, such as interleukin-12 (IL-12), IL-6, and tumor necrosis factor alpha, were dramatically impaired in S. pyogenes-stimulated MyD88(-/-) DCs. These results suggest that signaling through TLRs is the principal pathway by which DCs sense S. pyogenes and become activated. Surprisingly, DCs deficient in signaling through each of the TLRs reported as potential receptors for gram-positive cell components, such as TLR1, TLR2, TLR4, TLR9, and TLR2/6, were not impaired in the secretion of proinflammatory cytokines and the up-regulation of costimulatory molecules after S. pyogenes stimulation. In conclusion, our results exclude a major involvement of a single TLR or the heterodimer TLR2/6 in S. pyogenes sensing by DCs and argue for a multimodal recognition in which a combination of several different TLR-mediated signals is essential for a rapid and effective response to the pathogen.
    • SCM, the M Protein of Streptococcus canis Binds Immunoglobulin G.

      Bergmann, Simone; Eichhorn, Inga; Kohler, Thomas P; Hammerschmidt, Sven; Goldmann, Oliver; Rohde, M; Fulde, Marcus; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr.7, 38124 Braunschweig, Germany. (2017)
      The M protein of Streptococcus canis (SCM) is a virulence factor and serves as a surface-associated receptor with a particular affinity for mini-plasminogen, a cleavage product of the broad-spectrum serine protease plasmin. Here, we report that SCM has an additional high-affinity immunoglobulin G (IgG) binding activity. The ability of a particular S. canis isolate to bind to IgG significantly correlates with a scm-positive phenotype, suggesting a dominant role of SCM as an IgG receptor. Subsequent heterologous expression of SCM in non-IgG binding S. gordonii and Western Blot analysis with purified recombinant SCM proteins confirmed its IgG receptor function. As expected for a zoonotic agent, the SCM-IgG interaction is species-unspecific, with a particular affinity of SCM for IgGs derived from human, cats, dogs, horses, mice, and rabbits, but not from cows and goats. Similar to other streptococcal IgG-binding proteins, the interaction between SCM and IgG occurs via the conserved Fc domain and is, therefore, non-opsonic. Interestingly, the interaction between SCM and IgG-Fc on the bacterial surface specifically prevents opsonization by C1q, which might constitute another anti-phagocytic mechanism of SCM. Extensive binding analyses with a variety of different truncated SCM fragments defined a region of 52 amino acids located in the central part of the mature SCM protein which is important for IgG binding. This binding region is highly conserved among SCM proteins derived from different S. canis isolates but differs significantly from IgG-Fc receptors of S. pyogenes and S. dysgalactiae sub. equisimilis, respectively. In summary, we present an additional role of SCM in the pathogen-host interaction of S. canis. The detailed analysis of the SCM-IgG interaction should contribute to a better understanding of the complex roles of M proteins in streptococcal pathogenesis.
    • Staphylococcus aureus evades the extracellular antimicrobial activity of mast cells by promoting its own uptake.

      Abel, Jens; Goldmann, Oliver; Ziegler, Christina; Höltje, Claudia; Smeltzer, Mark S; Cheung, Ambrose L; Bruhn, Daniela; Rohde, Manfred; Medina, Eva; Infection Immunology Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany. (2011)
      In this study, we investigated the interactions of Staphylococcus aureus with mast cells, which are multifunctional sentinels lining the surfaces of the body. We found that bone marrow-derived murine mast cells (BMMC) exerted a powerful phagocytosis-independent antimicrobial activity against S. aureus. Both the release of extracellular traps as well as discharge of antimicrobial compounds were the mechanisms used by the BMMC to kill extracellular S. aureus. This was accompanied by the secretion of mediators such as TNF-α involved in the recruitment of effector cells. Interestingly, S. aureus subverted the extracellular antimicrobial activity of the BMMC by internalizing within these cells. S. aureus was also capable to internalize within human mast cells (HMC-1) and within murine skin mast cells during in vivo infection. Bacteria internalization was, at least in part, mediated by the α5β1 integrins expressed on the surface of the mast cell. In the intracellular milieu, the bacterium survived and persisted by increasing the cell wall thickness and by gaining access into the mast cell cytosol. The expression of α-hemolysin was essential for staphylococci intracellular persistence. By hiding within the long-life mast cells, staphylococci not only avoid clearance but also establish an infection reservoir that could contribute to chronic carriage.
    • Staphylococcus aureus phenotype switching: an effective bacterial strategy to escape host immune response and establish a chronic infection.

      Tuchscherr, Lorena; Medina, Eva; Hussain, Muzaffar; Völker, Wolfgang; Heitmann, Vanessa; Niemann, Silke; Holzinger, Dirk; Roth, Johannes; Proctor, Richard A; Becker, Karsten; et al. (2011-03)
      Staphylococcus aureus is a frequent cause for serious, chronic and therapy-refractive infections in spite of susceptibility to antibiotics in vitro. In chronic infections, altered bacterial phenotypes, such as small colony variants (SCVs), have been found. Yet, it is largely unclear whether the ability to interconvert from the wild-type to the SCV phenotype is only a rare clinical and/or just laboratory phenomenon or is essential to sustain an infection. Here, we performed different long-term in vitro and in vivo infection models with S. aureus and we show that viable bacteria can persist within host cells and/or tissues for several weeks. Persistence induced bacterial phenotypic diversity, including SCV phenotypes, accompanied by changes in virulence factor expression and auxotrophism. However, the recovered SCV phenotypes were highly dynamic and rapidly reverted to the fully virulent wild-type form when leaving the intracellular location and infecting new cells. Our findings demonstrate that bacterial phenotype switching is an integral part of the infection process that enables the bacteria to hide inside host cells, which can be a reservoir for chronic and therapy-refractive infections.
    • Subcutaneous infection with S. aureus in mice reveals association of resistance with influx of neutrophils and Th2 response.

      Nippe, Nadine; Varga, Georg; Holzinger, Dirk; Löffler, Bettina; Medina, Eva; Becker, Karsten; Roth, Johannes; Ehrchen, Jan M; Sunderkötter, Cord; Institute of Immunology, University of Muenster, Muenster, Germany. (2011-01)
      Staphylococcus aureus is the leading cause of bacterial skin infection. Once it overcomes the epithelial barrier, it either remains locally controlled or spreads in the dermis causing soft tissue infection. These different courses depend not only on its virulence factors, but also on the immune response of the infected individual. The goal of this study was to identify host factors that influence different outcomes. We, therefore, established comparative analysis of subcutaneous footpad infection with S. aureus (SH1000) in different inbred mouse strains. We found that C57BL/6 mice are more susceptible than BALB/c and DBA/2 mice, reflected by significantly higher footpad swelling and bacterial load, as well as increased dissemination of bacteria into inguinal lymph nodes and kidneys. This susceptibility was associated with lower influx of polymorphonuclear leukocytes (PMNs), but higher secretion of CXCL-2. Remarkably, resistance correlated with S. aureus-specific Th2-cell response in BALB/c and DBA/2 mice, whereas susceptible C57BL/6 mice generated a Th1-cell response. As Th1 cells are able to induce release of CXCL-2, and as CXCL-2 is able to increase the survival of S. aureus within PMNs, interactions between PMNs and Th1 or Th2 cells need to be considered as important mechanisms of resistance in murine soft tissue infection with S. aureus.
    • Transcriptome analysis of murine macrophages in response to infection with Streptococcus pyogenes reveals an unusual activation program.

      Goldmann, Oliver; von Köckritz-Blickwede, Maren; Höltje, Claudia; Chhatwal, Gursharan S; Geffers, Robert; Medina, Eva; Infection Immunology Research Group, Helmholtz Center for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany. (2007-08)
      The complex response of murine macrophages to infection with Streptococcus pyogenes was investigated at the level of gene expression with a high-density oligomer microarray. More than 400 genes were identified as being differentially regulated. Many of the up-regulated genes encode molecules involved in the immune response and in inflammation, transcription, signaling, apoptosis, the cell cycle, electron transport, and cell adhesion. Of particular interest was the up-regulation of proinflammatory cytokines, typical of the classically activated macrophages (M1 phenotype), such as tumor necrosis factor alpha, interleukin 1 (IL-1), and IL-6, and as well as the up-regulation of anti-inflammatory mediators, such as IL-1 decoy receptor and IL-10, associated with alternative macrophage activation (M2 phenotype). Furthermore, the gene encoding inducible nitric oxide synthase (iNOS), an enzyme typically implicated in classical activation, was not induced in infected macrophages. Instead, the gene encoding arginase, a competitor for the iNOS substrate arginine involved in the alternative activation pathway, was up-regulated in S. pyogenes-infected cells. Thus, the microarray-based gene expression analysis demonstrated that S. pyogenes induces an atypical activation program in macrophages, with some but not all features of the classical or alternative activation phenotypes. The microarray data also suggested that the bactericidal activity of macrophages against S. pyogenes is mediated by phagocyte oxidase, as p47phox was up-regulated in infected cells. Indeed, the in vivo and in vitro killing of S. pyogenes was markedly diminished in the absence of functional phagocyte (p47(phox-/-)) but not in the absence of iNOS (iNOS(-/-)). An understanding of how macrophages respond to S. pyogenes at the molecular level may facilitate the development of new therapeutic paradigms.