• High-resolution transcriptomic analysis of the adaptive response of Staphylococcus aureus during acute and chronic phases of osteomyelitis.

      Szafranska, Anna K; Oxley, Andrew P A; Chaves-Moreno, Diego; Horst, Sarah A; Roßlenbroich, Steffen; Peters, Georg; Goldmann, Oliver; Rohde, Manfred; Sinha, Bhanu; Pieper, Dietmar H; et al. (2014)
      Osteomyelitis is a difficult-to-eradicate bone infection typically caused by Staphylococcus aureus. In this study, we investigated the in vivo transcriptional adaptation of S. aureus during bone infection. To this end, we determined the transcriptome of S. aureus during the acute (day 7) and chronic (day 28) phases of experimental murine osteomyelitis using RNA sequencing (RNA-Seq). We identified a total of 180 genes significantly more highly expressed by S. aureus during acute or chronic in vivo infection than under in vitro growth conditions. These genes encoded proteins involved in gluconeogenesis, proteolysis of host proteins, iron acquisition, evasion of host immune defenses, and stress responses. At the regulatory level, sarA and -R and saeR and -S as well as the small RNA RsaC were predominantly expressed by S. aureus during in vivo infection. Only nine genes, including the genes encoding the arginine deiminase (ADI) pathway and those involved in the stringent response, were significantly more highly expressed by S. aureus during the chronic than the acute stage of infection. Analysis by quantitative reverse transcription-PCR (qRT-PCR) of a subset of these in vivo-expressed genes in clinical specimens yielded the same results as those observed in the murine system. Collectively, our results show that during acute osteomyelitis, S. aureus induced the transcription of genes that mediate metabolic adaptation, immune evasion, and replication. During the chronic phase, however, S. aureus switched its transcriptional response from a proliferative to a persistence mode, probably driven by the severe deficiency in nutrient supplies. Interfering with the survival strategies of S. aureus during chronic infection could lead to more effective treatments.
    • Phagocytosis Escape by a Staphylococcus aureus Protein That Connects Complement and Coagulation Proteins at the Bacterial Surface.

      Ko, Ya-Ping; Kuipers, Annemarie; Freitag, Claudia M; Jongerius, Ilse; Medina, Eva; van Rooijen, Willemien J; Spaan, András N; van Kessel, Kok P M; Höök, Magnus; Rooijakkers, Suzan H M; et al. (2013-12)
      Upon contact with human plasma, bacteria are rapidly recognized by the complement system that labels their surface for uptake and clearance by phagocytic cells. Staphylococcus aureus secretes the 16 kD Extracellular fibrinogen binding protein (Efb) that binds two different plasma proteins using separate domains: the Efb N-terminus binds to fibrinogen, while the C-terminus binds complement C3. In this study, we show that Efb blocks phagocytosis of S. aureus by human neutrophils. In vitro, we demonstrate that Efb blocks phagocytosis in plasma and in human whole blood. Using a mouse peritonitis model we show that Efb effectively blocks phagocytosis in vivo, either as a purified protein or when produced endogenously by S. aureus. Mutational analysis revealed that Efb requires both its fibrinogen and complement binding residues for phagocytic escape. Using confocal and transmission electron microscopy we show that Efb attracts fibrinogen to the surface of complement-labeled S. aureus generating a 'capsule'-like shield. This thick layer of fibrinogen shields both surface-bound C3b and antibodies from recognition by phagocytic receptors. This information is critical for future vaccination attempts, since opsonizing antibodies may not function in the presence of Efb. Altogether we discover that Efb from S. aureus uniquely escapes phagocytosis by forming a bridge between a complement and coagulation protein.
    • Lung dendritic cells facilitate extrapulmonary bacterial dissemination during pneumococcal pneumonia.

      Rosendahl, Alva; Bergmann, Simone; Hammerschmidt, Sven; Goldmann, Oliver; Medina, Eva; Infection Immunology Research Group, Department of Medical Microbiology, Helmholtz Centre for Infection Research Braunschweig, Germany. (2013)
      Streptococcus pneumoniae is a leading cause of bacterial pneumonia worldwide. Given the critical role of dendritic cells (DCs) in regulating and modulating the immune response to pathogens, we investigated here the role of DCs in S. pneumoniae lung infections. Using a well-established transgenic mouse line which allows the conditional transient depletion of DCs, we showed that ablation of DCs resulted in enhanced resistance to intranasal challenge with S. pneumoniae. DCs-depleted mice exhibited delayed bacterial systemic dissemination, significantly reduced bacterial loads in the infected organs and lower levels of serum inflammatory mediators than non-depleted animals. The increased resistance of DCs-depleted mice to S. pneumoniae was associated with a better capacity to restrict pneumococci extrapulmonary dissemination. Furthermore, we demonstrated that S. pneumoniae disseminated from the lungs into the regional lymph nodes in a cell-independent manner and that this direct way of dissemination was much more efficient in the presence of DCs. We also provide evidence that S. pneumoniae induces expression and activation of matrix metalloproteinase-9 (MMP-9) in cultured bone marrow-derived DCs. MMP-9 is a protease involved in the breakdown of extracellular matrix proteins and is critical for DC trafficking across extracellular matrix and basement membranes during the migration from the periphery to the lymph nodes. MMP-9 was also significantly up-regulated in the lungs of mice after intranasal infection with S. pneumoniae. Notably, the expression levels of MMP-9 in the infected lungs were significantly decreased after depletion of DCs suggesting the involvement of DCs in MMP-9 production during pneumococcal pneumonia. Thus, we propose that S. pneumoniae can exploit the DC-derived proteolysis to open tissue barriers thereby facilitating its own dissemination from the local site of infection.
    • Prognostic value and therapeutic potential of TREM-1 in Streptococcus pyogenes- induced sepsis.

      Horst, Sarah A; Linnér, Anna; Beineke, Andreas; Lehne, Sabine; Höltje, Claudia; Hecht, Alexander; Norrby-Teglund, Anna; Medina, Eva; Dep. of infection immunology, Helmholtz Centre for infection research, Braunschweig, Germany (2013)
      TREM-1 (triggering receptor expressed on myeloid cells) is a surface molecule expressed on neutrophils and macrophages which has been implicated in the amplification of inflammatory responses triggered during infection. In the present study, we have investigated the clinical significance of TREM-1 in Streptococcus pyogenes-induced severe sepsis in both experimentally infected mice as well as in patients with streptococcal toxic shock. We found that S. pyogenes induced a dose-dependent upregulation of TREM-1 in in vitro cultured phagocytic cells and in the organs of S. pyogenes-infected mice. Furthermore, we reported a positive correlation between serum levels of soluble TREM-1 (sTREM-1) and disease severity in infected patients as well as in experimentally infected mice. Hence, sTREM-1 may represent a useful surrogate marker for streptococcal sepsis. We found that modulation of TREM-1 by administration of the TREM-1 decoy receptor rTREM-1/Fc substantially attenuated the synthesis of inflammatory cytokines. More importantly, treatment of S. pyogenes-infected septic mice with rTREM-1/Fc or the synthetically produced conserved extracellular domain LP17 significantly improved disease outcome. In summary, our data suggest that TREM-1 may not only represent a valuable marker for S. pyogenes infection severity but it may also be an attractive target for the treatment of streptococcal sepsis.
    • Global transcriptome analysis in influenza-infected mouse lungs reveals the kinetics of innate and adaptive host immune responses.

      Pommerenke, Claudia; Wilk, Esther; Srivastava, Barkha; Schulze, Annika; Novoselova, Natalia; Geffers, Robert; Schughart, Klaus; Department of Infection Genetics, Helmholtz Centre for Infection Research and University of Veterinary Medicine Hannover, Braunschweig, Germany. (2012)
      An infection represents a highly dynamic process involving complex biological responses of the host at many levels. To describe such processes at a global level, we recorded gene expression changes in mouse lungs after a non-lethal infection with influenza A virus over a period of 60 days. Global analysis of the large data set identified distinct phases of the host response. The increase in interferon genes and up-regulation of a defined NK-specific gene set revealed the initiation of the early innate immune response phase. Subsequently, infiltration and activation of T and B cells could be observed by an augmentation of T and B cell specific signature gene expression. The changes in B cell gene expression and preceding chemokine subsets were associated with the formation of bronchus-associated lymphoid tissue. In addition, we compared the gene expression profiles from wild type mice with Rag2 mutant mice. This analysis readily demonstrated that the deficiency in the T and B cell responses in Rag2 mutants could be detected by changes in the global gene expression patterns of the whole lung. In conclusion, our comprehensive gene expression study describes for the first time the entire host response and its kinetics to an acute influenza A infection at the transcriptome level.
    • The expanding world of extracellular traps: not only neutrophils but much more.

      Goldmann, Oliver; Medina, Eva; Infection Immunology Research Group, Helmholtz Centre for Infection Research Braunschweig, Germany. (2012)
      The release of extracellular traps (ETs) is a recently described mechanism of innate immune response to infection. Although ETs have been intensely investigated in the context of neutrophil antimicrobial effector mechanisms, other immune cells such as mast cells, eosinophils, and macrophages can also release these structures. The different ETs have several features in common, regardless of the type of cells from which they originated, including a DNA backbone with embedded antimicrobial peptides, proteases, and histones. However, they also exhibit remarkable individual differences such as the type of sub-cellular compartments from where the DNA backbone originates (e.g., nucleus or mitochondria), the proportion of responding cells within the pool, and/or the molecular mechanism/s underlying the ETs formation. This review summarizes the knowledge accumulated in recent years regarding the complex and expanding world of ETs and their role in immune function with particular emphasis on the role of other immune cells rather than on neutrophils exclusively.
    • Staphylococcus aureus phenotype switching: an effective bacterial strategy to escape host immune response and establish a chronic infection.

      Tuchscherr, Lorena; Medina, Eva; Hussain, Muzaffar; Völker, Wolfgang; Heitmann, Vanessa; Niemann, Silke; Holzinger, Dirk; Roth, Johannes; Proctor, Richard A; Becker, Karsten; et al. (2011-03)
      Staphylococcus aureus is a frequent cause for serious, chronic and therapy-refractive infections in spite of susceptibility to antibiotics in vitro. In chronic infections, altered bacterial phenotypes, such as small colony variants (SCVs), have been found. Yet, it is largely unclear whether the ability to interconvert from the wild-type to the SCV phenotype is only a rare clinical and/or just laboratory phenomenon or is essential to sustain an infection. Here, we performed different long-term in vitro and in vivo infection models with S. aureus and we show that viable bacteria can persist within host cells and/or tissues for several weeks. Persistence induced bacterial phenotypic diversity, including SCV phenotypes, accompanied by changes in virulence factor expression and auxotrophism. However, the recovered SCV phenotypes were highly dynamic and rapidly reverted to the fully virulent wild-type form when leaving the intracellular location and infecting new cells. Our findings demonstrate that bacterial phenotype switching is an integral part of the infection process that enables the bacteria to hide inside host cells, which can be a reservoir for chronic and therapy-refractive infections.
    • Subcutaneous infection with S. aureus in mice reveals association of resistance with influx of neutrophils and Th2 response.

      Nippe, Nadine; Varga, Georg; Holzinger, Dirk; Löffler, Bettina; Medina, Eva; Becker, Karsten; Roth, Johannes; Ehrchen, Jan M; Sunderkötter, Cord; Institute of Immunology, University of Muenster, Muenster, Germany. (2011-01)
      Staphylococcus aureus is the leading cause of bacterial skin infection. Once it overcomes the epithelial barrier, it either remains locally controlled or spreads in the dermis causing soft tissue infection. These different courses depend not only on its virulence factors, but also on the immune response of the infected individual. The goal of this study was to identify host factors that influence different outcomes. We, therefore, established comparative analysis of subcutaneous footpad infection with S. aureus (SH1000) in different inbred mouse strains. We found that C57BL/6 mice are more susceptible than BALB/c and DBA/2 mice, reflected by significantly higher footpad swelling and bacterial load, as well as increased dissemination of bacteria into inguinal lymph nodes and kidneys. This susceptibility was associated with lower influx of polymorphonuclear leukocytes (PMNs), but higher secretion of CXCL-2. Remarkably, resistance correlated with S. aureus-specific Th2-cell response in BALB/c and DBA/2 mice, whereas susceptible C57BL/6 mice generated a Th1-cell response. As Th1 cells are able to induce release of CXCL-2, and as CXCL-2 is able to increase the survival of S. aureus within PMNs, interactions between PMNs and Th1 or Th2 cells need to be considered as important mechanisms of resistance in murine soft tissue infection with S. aureus.
    • Staphylococcus aureus evades the extracellular antimicrobial activity of mast cells by promoting its own uptake.

      Abel, Jens; Goldmann, Oliver; Ziegler, Christina; Höltje, Claudia; Smeltzer, Mark S; Cheung, Ambrose L; Bruhn, Daniela; Rohde, Manfred; Medina, Eva; Infection Immunology Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany. (2011)
      In this study, we investigated the interactions of Staphylococcus aureus with mast cells, which are multifunctional sentinels lining the surfaces of the body. We found that bone marrow-derived murine mast cells (BMMC) exerted a powerful phagocytosis-independent antimicrobial activity against S. aureus. Both the release of extracellular traps as well as discharge of antimicrobial compounds were the mechanisms used by the BMMC to kill extracellular S. aureus. This was accompanied by the secretion of mediators such as TNF-α involved in the recruitment of effector cells. Interestingly, S. aureus subverted the extracellular antimicrobial activity of the BMMC by internalizing within these cells. S. aureus was also capable to internalize within human mast cells (HMC-1) and within murine skin mast cells during in vivo infection. Bacteria internalization was, at least in part, mediated by the α5β1 integrins expressed on the surface of the mast cell. In the intracellular milieu, the bacterium survived and persisted by increasing the cell wall thickness and by gaining access into the mast cell cytosol. The expression of α-hemolysin was essential for staphylococci intracellular persistence. By hiding within the long-life mast cells, staphylococci not only avoid clearance but also establish an infection reservoir that could contribute to chronic carriage.
    • Age-related susceptibility to Streptococcus pyogenes infection in mice: underlying immune dysfunction and strategy to enhance immunity.

      Goldmann, Oliver; Lehne, Sabine; Medina, Eva; Infection Immunology Research Group, Department of Microbial Pathogenesis, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, D-38124 Braunschweig, Germany. (2010-04)
      Epidemiological studies have shown that the elderly are at higher risk of severe Streptococcus pyogenes infections. In this study, we used a mouse model that displays the age-related loss of resistance to S. pyogenes infection seen in humans to investigate the impaired immune mechanism underlying the age-associated susceptibility to this pathogen. Young (2-3 months old) and aged (>20 months old) BALB/c mice were subcutaneously or intravenously inoculated with S. pyogenes and their capacity to control infection was compared. Aged mice showed faster progression of disease, earlier morbidity, and increased mortality when compared with young animals. Since macrophages are critical for host defence against S. pyogenes, we investigated whether susceptibility of aged mice may be due to an age-associated decline in the functionality of these cells. Our results showed that macrophages from aged mice were as capable as those from young animals to uptake and kill S. pyogenes, but the number of resident tissue macrophages was significantly reduced in the aged host. Treatment of aged mice with macrophage colony-stimulating factor (M-CSF) significantly increased the number of resident macrophages and improved their response to infection. Our results indicate that treatment with M-CSF can restore, at least in part, the mechanisms affected by immunosenescence and enhance the natural resistance of aged mice to infection with S. pyogenes.
    • Immune recognition of Streptococcus pyogenes by dendritic cells.

      Loof, Torsten G; Goldmann, Oliver; Medina, Eva; Infection Immunology Research Group, Department of Microbial Pathogenesis, Helmholtz Center for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany. (2008-06)
      Streptococcus pyogenes is one of the most frequent human pathogens. Recent studies have identified dendritic cells (DCs) as important contributors to host defense against S. pyogenes. The objective of this study was to identify the receptors involved in immune recognition of S. pyogenes by DCs. To determine whether Toll-like receptors (TLRs) were involved in DC sensing of S. pyogenes, we evaluated the response of bone marrow-derived DCs obtained from mice deficient in MyD88, an adapter molecule used by almost all TLRs, following S. pyogenes stimulation. Despite the fact that MyD88(-/-) DCs did not differ from wild-type DCs in the ability to internalize and kill S. pyogenes, the up-regulation of maturation markers, such as CD40, CD80, and CD86, and the production of inflammatory cytokines, such as interleukin-12 (IL-12), IL-6, and tumor necrosis factor alpha, were dramatically impaired in S. pyogenes-stimulated MyD88(-/-) DCs. These results suggest that signaling through TLRs is the principal pathway by which DCs sense S. pyogenes and become activated. Surprisingly, DCs deficient in signaling through each of the TLRs reported as potential receptors for gram-positive cell components, such as TLR1, TLR2, TLR4, TLR9, and TLR2/6, were not impaired in the secretion of proinflammatory cytokines and the up-regulation of costimulatory molecules after S. pyogenes stimulation. In conclusion, our results exclude a major involvement of a single TLR or the heterodimer TLR2/6 in S. pyogenes sensing by DCs and argue for a multimodal recognition in which a combination of several different TLR-mediated signals is essential for a rapid and effective response to the pathogen.
    • Phagocytosis-independent antimicrobial activity of mast cells by means of extracellular trap formation.

      von Köckritz-Blickwede, Maren; Goldmann, Oliver; Thulin, Pontus; Heinemann, Katja; Norrby-Teglund, Anna; Rohde, Manfred; Medina, Eva; Infection Immunology Research Group, Helmholtz Center for Infection Research, Braunschweig, Germany. (2008-03-15)
      These days it has been increasingly recognized that mast cells (MCs) are critical components of host defense against pathogens. In this study, we have provided the first evidence that MCs can kill bacteria by entrapping them in extracellular structures similar to the extracellular traps described for neutrophils (NETs). We took advantage of the ability of MCs to kill the human pathogen Streptococcus pyogenes by a phagocytosis-independent mechanism in order to characterize the extracellular antimicrobial activity of MCs. Close contact of bacteria and MCs was required for full antimicrobial activity. Immunofluorescence and electron microscopy revealed that S pyogenes was entrapped by extracellular structures produced by MCs (MCETs), which are composed of DNA, histones, tryptase, and the antimicrobial peptide LL-37. Disruption of MCETs significantly reduced the antimicrobial effect of MCs, suggesting that intact extracellular webs are critical for effective inhibition of bacterial growth. Similar to NETs, production of MCETs was mediated by a reactive oxygen species (ROS)-dependent cell death mechanism accompanied by disruption of the nuclear envelope, which can be induced after stimulation of MCs with phorbol-12-myristate-13-acetate (PMA), H(2)O(2), or bacterial pathogens. Our study provides the first experimental evidence of antimicrobial extracellular traps formation by an immune cell population other than neutrophils.
    • Contribution of interleukin-6/gp 130 signaling in hepatocytes to the inflammatory response in mice infected with Streptococcus pyogenes.

      Klein, Christian; Medina, Eva; Sander, Leif; Dierssen, Uta; Roskams, Tania; Mueller, Werner; Trautwein, Christian; Goldmann, Oliver; Medizinische Klinik III, University Hospital Aachen, Rheinisch-Westfalisch Techniche Hochschule Aachen, Aachen, Germany. christian.klein@dife.de (2007-09-01)
      BACKGROUND: Sepsis and septic shock caused by gram-positive bacteria have become increasingly frequent clinical problems. These conditions are accompanied by an overwhelming inflammation in which the liver plays a central role as a source and target of inflammatory mediators. Sepsis is still associated with high mortality rates, and new intervention strategies directed at ameliorating the extent of the inflammatory reaction are strongly needed. Here, we investigated whether blockage of the transducer gp130, a receptor involved in the regulation of the inflammatory response, might be useful in the treatment of experimental gram-positive sepsis. METHODS: An experimental model of gram-positive sepsis was used in which liver-specific gp130-deficient mice (FVB/n alfpCre+ gp130(LoxP/LoxP)) and wild-type mice (FVB/n gp130(LoxP/LoxP)) were intravenously infected with Streptococcus pyogenes. The following parameters were monitored: mortality, bacterial loads in systemic organs, serum inflammatory cytokine levels, and organ damage. RESULTS: We show that infected gp130-deficient mice survived significantly longer, had lower bacterial loads, and developed organ damage more slowly than infected wild-type mice. Furthermore, levels of interferon- gamma , interleukin-6, and the chemokine cytokine-induced neutrophil chemoattractant were significantly lower in gp130-deficient mice than in wild-type mice. Histopathological examination of livers showed lower amounts of neutrophil infiltration, apoptosis, and tissue damage in infected gp130-deficient mice than in wild-type mice. CONCLUSION: Our results demonstrate that the gp130 receptor is involved in the regulation of inflammation during gram-positive sepsis and that blockage of gp130 signaling in hepatocytes could constitute a novel target for adjunctive therapy in patients with sepsis.
    • Transcriptome analysis of murine macrophages in response to infection with Streptococcus pyogenes reveals an unusual activation program.

      Goldmann, Oliver; von Köckritz-Blickwede, Maren; Höltje, Claudia; Chhatwal, Gursharan S; Geffers, Robert; Medina, Eva; Infection Immunology Research Group, Helmholtz Center for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany. (2007-08)
      The complex response of murine macrophages to infection with Streptococcus pyogenes was investigated at the level of gene expression with a high-density oligomer microarray. More than 400 genes were identified as being differentially regulated. Many of the up-regulated genes encode molecules involved in the immune response and in inflammation, transcription, signaling, apoptosis, the cell cycle, electron transport, and cell adhesion. Of particular interest was the up-regulation of proinflammatory cytokines, typical of the classically activated macrophages (M1 phenotype), such as tumor necrosis factor alpha, interleukin 1 (IL-1), and IL-6, and as well as the up-regulation of anti-inflammatory mediators, such as IL-1 decoy receptor and IL-10, associated with alternative macrophage activation (M2 phenotype). Furthermore, the gene encoding inducible nitric oxide synthase (iNOS), an enzyme typically implicated in classical activation, was not induced in infected macrophages. Instead, the gene encoding arginase, a competitor for the iNOS substrate arginine involved in the alternative activation pathway, was up-regulated in S. pyogenes-infected cells. Thus, the microarray-based gene expression analysis demonstrated that S. pyogenes induces an atypical activation program in macrophages, with some but not all features of the classical or alternative activation phenotypes. The microarray data also suggested that the bactericidal activity of macrophages against S. pyogenes is mediated by phagocyte oxidase, as p47phox was up-regulated in infected cells. Indeed, the in vivo and in vitro killing of S. pyogenes was markedly diminished in the absence of functional phagocyte (p47(phox-/-)) but not in the absence of iNOS (iNOS(-/-)). An understanding of how macrophages respond to S. pyogenes at the molecular level may facilitate the development of new therapeutic paradigms.
    • Vaccination equally enables both genetically susceptible and resistant mice to control infection with group A streptococci.

      Siegert, Jeannette; Sastalla, Inka; Chhatwal, Gursharan Singh; Medina, Eva (2006-02-01)
      There is substantial evidence that host genetic factors are important in determining susceptibility to infection with group A streptococci (GAS). Several studies have revealed that, similarly to humans, a genetic component may be important in determining susceptibility to GAS infection in mice. Thus, C3H/HeN mice are much more susceptible to streptococcal infection than BALB/c mice. We have determined here whether vaccination makes genetically susceptible mice as capable as genetically resistant mice to control GAS infection. Resistant BALB/c and susceptible C3H/HeN mice were immunized either systemically with heat-killed GAS or through the mucosal route with an M protein-based subunit vaccine, and challenged with live bacteria. Vaccination elicited in both mouse strains similar levels of bactericidal anti-GAS IgG antibodies and also antigen-specific mucosal IgA. Vaccination provided mice of both strains with an increased and equal capacity to express immunity against GAS as indicated by the reduced level of bacteria in the organs and the ability of vaccinated mice to survive infection. Protection in vaccinated mice was dependent on the presence of T cell-dependent bactericidal antibodies as shown by the ability of serum elicited in immunocompetent mice but not of serum elicited in T cell-deficient nu/nu mice to passively transfer anti-GAS immunity. In conclusion, the results presented here demonstrated that the presence of anti-GAS specific, T cell-dependent bactericidal antibodies elicited after vaccination overcomes the innate genetic susceptibility of C3H/HeN mice and makes both resistant and susceptible mice equally capable of controlling GAS infection.
    • Zirconyl Clindamycinphosphate Antibiotic Nanocarriers for Targeting Intracellular Persisting

      Heck, Joachim G.; Rox, Katharina; Lünsdorf, Heinrich; Lückerath, Thorsten; Klaassen, Nicole; Medina, Eva; Goldmann, Oliver; Feldmann, Claus; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany.
      [ZrO]2+[CLP]2– (CLP: clindamycinphosphate) inorganic–organic hybrid nanoparticles (IOH-NPs) represent a novel strategy to treat persisting, recurrent infections with multiresistant Staphylococcus aureus. [ZrO]2+[CLP]2– is prepared in water and contains the approved antibiotic with unprecedented high load (82 wt % CLP per nanoparticle). The IOH-NPs result in 70–150-times higher antibiotic concentrations at difficult-to-reach infection sites, offering new options for improved drug delivery for chronic and difficult-to-treat infections.
    • Changed Expression of Cytoskeleton Proteins During Lung Injury in a Mouse Model of Infection.

      Ferrer-Navarro, Mario; Strehlitz, Anja; Medina, Eva; Vila, Jordi
      Infections by are a major cause of morbidity and mortality worldwide, often causing community-acquired pneumonia, otitis media and also bacteremia and meningitis. Studies on are mainly focused on its virulence or capacity to evade the host immune system, but little is known about the injury caused in lungs during a pneumococcal infection. Herein we investigated this issue comparing the proteome profile of lungs from infected mice with control mice by means of difference gel electrophoresis (DIGE) technology. In order to obtain reliable results three biological replicas were used, and four technical replicas were carried out in each biological replica. Proteomic comparison was performed at two time points: 24 and 48 h post infection. A total of 91 proteins were identified with different abundance. We found important changes in the protein profiles during pneumococcal infection mainly associated with regulation of vesicle-mediated transport, wound healing, and cytoskeleton organization. In conclusion, the results obtained show that the cytoskeleton of the host cell is modified in infection.
    • Fluorescent Inorganic-Organic Hybrid Nanoparticles

      Neumeier, B. Lilli; Khorenko, Mikhail; Alves, Frauke; Goldmann, Oliver; Napp, Joanna; Schepers, Ute; Reichardt, Holger M.; Feldmann, Claus; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany.
      Inorganic‐organic hybrid nanoparticles (IOH‐NPs) with a general composition [ZrO]2+[RDyeOPO3]2−, [Ln]3+n/3[RDye(SO3)n]n−, [Ln(OH)]2+n/2[RDye(SO3)n]n−, or [LnO]+n[RDye(SO3)n]n− (Ln: lanthanide) are a novel class of nanomaterials for fluorescence detection and optical imaging. IOH‐NPs are characterized by an extremely high load of the fluorescent dye (70–85 wt‐%), high photochemical stability, straightforward aqueous synthesis, low material complexity, intense emission and high cell uptake at low toxicity. Besides full‐color emission, IOH‐NPs are suitable for multimodal imaging, singlet‐oxygen generation as well as drug delivery and drug release. This focus review presents the material concept of the IOH‐NPs as well as their synthesis and characterization. Their characteristic features are illustrated by selected in vitro and in vivo studies to initiate application in biology and medicine.