News

group leader: Dr. Pasche

Recent Submissions

  • Itaconate and derivatives reduce interferon responses and inflammation in influenza A virus infection.

    Sohail, Aaqib; Iqbal, Azeem A; Sahini, Nishika; Chen, Fangfang; Tantawy, Mohamed; Waqas, Fakhar; Winterhoff, Moritz; Ebensen, Thomas; Schultz, Kristin; Geffers, Robert; et al. (PLOS, 2022-01-13)
    Excessive inflammation is a major cause of morbidity and mortality in many viral infections including influenza. Therefore, there is a need for therapeutic interventions that dampen and redirect inflammatory responses and, ideally, exert antiviral effects. Itaconate is an immunomodulatory metabolite which also reprograms cell metabolism and inflammatory responses when applied exogenously. We evaluated effects of endogenous itaconate and exogenous application of itaconate and its variants dimethyl- and 4-octyl-itaconate (DI, 4OI) on host responses to influenza A virus (IAV). Infection induced expression of ACOD1, the enzyme catalyzing itaconate synthesis, in monocytes and macrophages, which correlated with viral replication and was abrogated by DI and 4OI treatment. In IAV-infected mice, pulmonary inflammation and weight loss were greater in Acod1-/- than in wild-type mice, and DI treatment reduced pulmonary inflammation and mortality. The compounds reversed infection-triggered interferon responses and modulated inflammation in human cells supporting non-productive and productive infection, in peripheral blood mononuclear cells, and in human lung tissue. Itaconates reduced ROS levels and STAT1 phosphorylation, whereas AKT phosphorylation was reduced by 4OI and DI but increased by itaconate. Single-cell RNA sequencing identified monocytes as the main target of infection and the exclusive source of ACOD1 mRNA in peripheral blood. DI treatment silenced IFN-responses predominantly in monocytes, but also in lymphocytes and natural killer cells. Ectopic synthesis of itaconate in A549 cells, which do not physiologically express ACOD1, reduced infection-driven inflammation, and DI reduced IAV- and IFNγ-induced CXCL10 expression in murine macrophages independent of the presence of endogenous ACOD1. The compounds differed greatly in their effects on cellular gene homeostasis and released cytokines/chemokines, but all three markedly reduced release of the pro-inflammatory chemokines CXCL10 (IP-10) and CCL2 (MCP-1). Viral replication did not increase under treatment despite the dramatically repressed IFN responses. In fact, 4OI strongly inhibited viral transcription in peripheral blood mononuclear cells, and the compounds reduced viral titers (4OI>Ita>DI) in A549 cells whereas viral transcription was unaffected. Taken together, these results reveal itaconates as immunomodulatory and antiviral interventions for influenza virus infection.
  • A Central Role for Atg5 in Microbiota-Dependent Foxp3 RORγt Treg Cell Preservation to Maintain Intestinal Immune Homeostasis.

    Plaza-Sirvent, Carlos; Zhao, Bei; Bronietzki, Alisha W; Pils, Marina C; Tafrishi, Neda; Schuster, Marc; Strowig, Till; Schmitz, Ingo; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Frontiers, 2021-08-26)
    Autophagy is an evolutionary conserved catabolic pathway that ensures the degradation of intracellular components. The autophagic pathway is regulated by autophagy-related (Atg) proteins that govern formation of double-membraned vesicles called autophagosomes. Autophagy deficiency in regulatory T (Treg) cells leads to increased apoptosis of these cells and to the development of autoimmune disorders, predominantly characterized by intestinal inflammation. Recently, RORγt-expressing Treg cells have been identified as key regulators of gut homeostasis, preventing intestinal immunopathology. To study the role of autophagy in RORγt+ Foxp3+ Treg cells, we generated mice lacking the essential component of the core autophagy machinery Atg5 in Foxp3+ cells. Atg5 deficiency in Treg cells led to a predominant intestinal inflammation. While Atg5-deficient Treg cells were reduced in peripheral lymphoid organs, the intestinal RORγt+ Foxp3+ subpopulation of Treg cells was most severely affected. Our data indicated that autophagy is essential to maintain the intestinal RORγt+ Foxp3+ Treg population, thereby protecting the mice from gut inflammatory disorders.
  • Curbing gastrointestinal infections by defensin fragment modifications without harming commensal microbiota.

    Koeninger, Louis; Osbelt, Lisa; Berscheid, Anne; Wendler, Judith; Berger, Jügen; Hipp, Katharina; Marina C Pils, Marina C.; Nisar P Malek, Nisar P.; Heike Brötz-Oesterhelt, Heike; Strowig, Till; et al. (Nature research, 2021-01-08)
    The occurrence and spread of multidrug-resistant pathogens, especially bacteria from the ESKAPE panel, increases the risk to succumb to untreatable infections. We developed a novel antimicrobial peptide, Pam-3, with antibacterial and antibiofilm properties to counter this threat. The peptide is based on an eight-amino acid carboxyl-terminal fragment of human β-defensin 1. Pam-3 exhibited prominent antimicrobial activity against multidrug-resistant ESKAPE pathogens and additionally eradicated already established biofilms in vitro, primarily by disrupting membrane integrity of its target cell. Importantly, prolonged exposure did not result in drug-resistance to Pam-3. In mouse models, Pam-3 selectively reduced acute intestinal Salmonella and established Citrobacter infections, without compromising the core microbiota, hence displaying an added benefit to traditional broad-spectrum antibiotics. In conclusion, our data support the development of defensin-derived antimicrobial agents as a novel approach to fight multidrug-resistant bacteria, where Pam-3 appears as a particularly promising microbiota-preserving candidate.
  • Perturbation of the gut microbiome by Prevotella spp. enhances host susceptibility to mucosal inflammation.

    Iljazovic, Aida; Roy, Urmi; Gálvez, Eric J C; Lesker, Till R; Zhao, Bei; Gronow, Achim; Amend, Lena; Will, Sabine E; Hofmann, Julia D; Pils, Marina C; et al. (Springer Nature, 2020-05-20)
    Diverse microbial signatures within the intestinal microbiota have been associated with intestinal and systemic inflammatory diseases, but whether these candidate microbes actively modulate host phenotypes or passively expand within the altered microbial ecosystem is frequently not known. Here we demonstrate that colonization of mice with a member of the genus Prevotella, which has been previously associated to colitis in mice, exacerbates intestinal inflammation. Our analysis revealed that Prevotella intestinalis alters composition and function of the ecosystem resulting in a reduction of short-chain fatty acids, specifically acetate, and consequently a decrease in intestinal IL-18 levels during steady state. Supplementation of IL-18 to Prevotella-colonized mice was sufficient to reduce intestinal inflammation. Hence, we conclude that intestinal Prevotella colonization results in metabolic changes in the microbiota, which reduce IL-18 production and consequently exacerbate intestinal inflammation, and potential systemic autoimmunity.
  • Validation of an Autoclave Procedure for Sterilization of Mouse (Mus musculus) Carcasses.

    Pils, Marina C; Kränzler, Katrin; Beyer, Petra; Heise, Ulrike; Pasche, Bastian; Riedesel, Hermann; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (American Association for Laboratory Animal Science, 2018-11-06)
    The sterilization of potentially infectious animal carcasses is an important biologic safety issue in animal facilities operating as infection or quarantine barriers. However, the literature lacks a validated protocol. Here we describe the validation of an autoclave program suitable for daily use in a small rodent biocontainment unit. We evaluated several procedures for processing mouse carcasses in a standard autoclave. Heat sensors and biologic indicators were implanted inside the peritoneal cavity of dead mice, which were loaded at various densities into IVC cages or metal boxes. Heat sensors revealed broad differences in temperature inside carcasses compared with the autoclave chamber. Achieving the appropriate sterilization temperature was considerably prolonged in carcasses compared with typical laboratory waste material. We show that for 5 cadavers placed well separated inside an IVC, a modified program for mouse cage sterilization using 134 °C for 15 min is suitable. To sterilize approximately 1 kg of carcasses in autoclavable boxes, a period of 6 h is required to reach an effective temperature of 121 °C for 60 min at the center of the waste by using an autoclave program for liquids. In conclusion, we here validated 2 protocols for the sterilization of potentially infectious mouse carcasses, to ensure the application of efficacious procedures.
  • Labyrinthopeptins as virolytic inhibitors of respiratory syncytial virus cell entry.

    Blockus, Sebastian; Sake, Svenja M; Wetzke, Martin; Grethe, Christina; Graalmann, Theresa; Pils, Marina; Le Goffic, Ronan; Galloux, Marie; Prochnow, Hans; Rox, Katharina; et al. (Elsevier, 2020-03-18)
    Acute lower respiratory tract infections (ALRI) caused by respiratory syncytial virus (RSV) are associated with a severe disease burden among infants and elderly patients. Treatment options are limited. While numerous drug candidates with different viral targets are under development, the utility of RSV entry inhibitors is challenged by a low resistance barrier and by single mutations causing cross-resistance against a wide spectrum of fusion inhibitor chemotypes. We developed a cell-based screening assay for discovery of compounds inhibiting infection with primary RSV isolates. Using this system, we identified labyrinthopeptin A1 and A2 (Laby A1/A2), lantibiotics isolated from Actinomadura namibiensis, as effective RSV cell entry inhibitors with IC50s of 0.39 μM and 4.97 μM, respectively, and with favourable therapeutic index (>200 and > 20, respectively). Both molecules were active against multiple RSV strains including primary isolates and their antiviral activity against RSV was confirmed in primary human airway cells ex vivo and a murine model in vivo. Laby A1/A2 were antiviral in prophylactic and therapeutic treatment regimens and displayed synergistic activity when applied in combination with each other. Mechanistic studies showed that Laby A1/A2 exert virolytic activity likely by binding to phosphatidylethanolamine moieties within the viral membrane and by disrupting virus particle membrane integrity. Probably due to its specific mode of action, Laby A1/A2 antiviral activity was not affected by common resistance mutations to known RSV entry inhibitors. Taken together, Laby A1/A2 represent promising candidates for development as RSV inhibitors. Moreover, the cell-based screening system with primary RSV isolates described here should be useful to identify further antiviral agents.
  • Importance of flagella in acute and chronic Pseudomonas aeruginosa infections.

    Lorenz, Anne; Preuße, Matthias; Bruchmann, Sebastian; Pawar, Vinay; Grahl, Nora; Pils, Marina C; Nolan, Laura M; Filloux, Alain; Weiss, Siegfried; Häussler, Susanne; et al. (Wiley-Blackwell, 2018-11-08)
    Pseudomonas aeruginosa is an environmental microorganism and a causative agent of diverse acute and chronic, biofilm-associated infections. Advancing research-based knowledge on its adaptation to conditions within the human host is bound to reveal novel strategies and targets for therapeutic intervention. Here, we investigated the traits that P. aeruginosa PA14 as well as a virulence attenuated ΔlasR mutant need to survive in selected murine infection models. Experimentally, the genetic programs that the bacteria use to adapt to biofilm-associated versus acute infections were dissected by passaging transposon mutant libraries through mouse lungs (acute) or mouse tumours (biofilm-infection). Adaptive metabolic changes of P. aeruginosa were generally required during both infection processes. Counter-selection against flagella expression was observed during acute lung infections. Obviously, avoidance of flagella-mediated activation of host immunity is advantageous for the wildtype bacteria. For the ΔlasR mutant, loss of flagella did not confer a selective advantage. Apparently, other pathogenesis mechanisms are active in this virulence attenuated strain. In contrast, the infective process of P. aeruginosa in the chronic biofilm model apparently required expression of flagellin. Together, our findings imply that the host immune reactions against the infectious agent are very decisive for acuteness and duration of the infectious disease. They direct disease outcome.
  • An Interferon Signature Discriminates Pneumococcal From Staphylococcal Pneumonia.

    Strehlitz, Anja; Goldmann, Oliver; Pils, Marina C; Pessler, Frank; Medina, Eva; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany.; TWINCORE, Zentrum für experimentelle und klinische Infektionsforschung GmbH,Feodor-Lynen Str. 7, 30625 Hannover, Germany. (Frontiers, 2018-01-01)
    Streptococcus pneumoniae is the most common cause of community-acquired pneumonia (CAP). Despite the low prevalence of CAP caused by methicillin-resistant Staphylococcus aureus (MRSA), CAP patients often receive empirical antibiotic therapy providing coverage for MRSA such as vancomycin or linezolid. An early differentiation between S. pneumoniae and S. aureus pneumonia can help to reduce the use of unnecessary antibiotics. The objective of this study was to identify candidate biomarkers that can discriminate pneumococcal from staphylococcal pneumonia. A genome-wide transcriptional analysis of lung and peripheral blood performed in murine models of S. pneumoniae and S. aureus lung infection identified an interferon signature specifically associated with S. pneumoniae infection. Prediction models built using a support vector machine and Monte Carlo cross-validation, identified the combination of the interferon-induced chemokines CXCL9 and CXCL10 serum concentrations as the set of biomarkers with best sensitivity, specificity, and predictive power that enabled an accurate discrimination between S. pneumoniae and S. aureus pneumonia. The predictive performance of these biomarkers was further validated in an independent cohort of mice. This study highlights the potential of serum CXCL9 and CXCL10 biomarkers as an adjunctive diagnostic tool that could facilitate prompt and correct pathogen-targeted therapy in CAP patients.
  • Presence of Infected Gr-1CD11bCD11c Monocytic Myeloid Derived Suppressor Cells Subverts T Cell Response and Is Associated With Impaired Dendritic Cell Function in Mycobacterium avium-Infected Mice.

    Abdissa, Ketema; Nerlich, Andreas; Beineke, Andreas; Ruangkiattikul, Nanthapon; Pawar, Vinay; Heise, Ulrike; Janze, Nina; Falk, Christine; Bruder, Dunja; Schleicher, Ulrike; et al. (2018-01-01)
    Myeloid-derived suppressor cells (MDSC) are immature myeloid cells with immunomodulatory function. To study the mechanism by which MDSC affect antimicrobial immunity, we infected mice with two M. avium strains of differential virulence, highly virulent Mycobacterium avium subsp. avium strain 25291 (MAA) and low virulent Mycobacterium avium subsp. hominissuis strain 104 (MAH). Intraperitoneal infection with MAA, but not MAH, caused severe disease and massive splenic infiltration of monocytic MDSC (M-MDSC; Gr-1intCD11bhiCD11cint) expressing inducible NO synthase (Nos2) and bearing high numbers of mycobacteria. Depletion experiments demonstrated that M-MDSC were essential for disease progression. NO production by M-MDSC influenced antigen-uptake and processing by dendritic cells and proliferation of CD4+ T cells. M-MDSC were also induced in MAA-infected mice lacking Nos2. In these mice CD4+ T cell expansion and control of infection were restored. However, T cell inhibition was only partially relieved and arginase (Arg) 1-expressing M-MDSC were accumulated. Likewise, inhibition of Arg1 also partially rescued T cell proliferation. Thus, mycobacterial virulence results in the induction of M-MDSC that block the T cell response in a Nos2- and Arg1-dependent manner.
  • Early Lymphocyte Loss and Increased Granulocyte/Lymphocyte Ratio Predict Systemic Spread of in a Mouse Model of Acute Skin Infection.

    Loof, Torsten G; Sohail, Aaqib; Bahgat, Mahmoud M; Tallam, Aravind; Arshad, Haroon; Akmatov, Manas K; Pils, Marina C; Heise, Ulrike; Beineke, Andreas; Pessler, Frank; et al.
    Group A streptococci may induce lymphopenia, but the value of lymphocyte loss as early biomarkers for systemic spread and severe infection has not been examined systematically. We evaluated peripheral blood cell indices as biomarkers for severity and spread of infection in a mouse model of skin infection, using two isolates of greatly differing virulence. Internal organs were examined histologically. After subcutaneous inoculation, strain AP1 disseminated rapidly to peripheral blood and internal organs, causing frank sepsis. In contrast, seeding of internal organs by 5448 was mild, this strain could not be isolated from blood, and infection remained mostly localized to skin. Histopathologic examination of liver revealed microvesicular fatty change (steatosis) in AP1 infection, and examination of spleen showed elevated apoptosis and blurring of the white pulp/red pulp border late (40 h post infection) in AP1 infection. Both strains caused profound lymphopenia, but lymphocyte loss was more rapid early in AP1 infection, and lymphocyte count at 6 h post infection was the most accurate early marker for AP1 infection (area under the receiver operator curve [AUC] = 0.93), followed by the granulocyte/lymphocyte ratio (AUC = 0.89). The results suggest that virulence of correlates with the degree of early lymphopenia and underscore the value of peripheral blood indices to predict severity of bacterial infections in mice. Early lymphopenia and elevated granulocyte/lymphocyte ratio merit further investigation as biomarkers for systemic spread of skin infections in humans and, possibly, related pyogenic streptococci in humans and animals.
  • Distinct Microbial Communities Trigger Colitis Development upon Intestinal Barrier Damage via Innate or Adaptive Immune Cells.

    Roy, Urmi; Gálvez, Eric J C; Iljazovic, Aida; Lesker, Till Robin; Błażejewski, Adrian J; Pils, Marina C; Heise, Ulrike; Huber, Samuel; Flavell, Richard A; Strowig, Till; et al. (2017-10-24)
    Inflammatory bowel disease comprises a group of heterogeneous diseases characterized by chronic and relapsing mucosal inflammation. Alterations in microbiota composition have been proposed to contribute to disease development, but no uniform signatures have yet been identified. Here, we compare the ability of a diverse set of microbial communities to exacerbate intestinal inflammation after chemical damage to the intestinal barrier. Strikingly, genetically identical wild-type mice differing only in their microbiota composition varied strongly in their colitis susceptibility. Transfer of distinct colitogenic communities in gene-deficient mice revealed that they triggered disease via opposing pathways either independent or dependent on adaptive immunity, specifically requiring antigen-specific CD4+ T cells. Our data provide evidence for the concept that microbial communities may alter disease susceptibility via different immune pathways despite eventually resulting in similar host pathology. This suggests a potential benefit for personalizing IBD therapies according to patient-specific microbiota signatures.
  • Impact of CCR7 on T-Cell Response and Susceptibility to Yersinia pseudotuberculosis Infection.

    Pezoldt, Joern; Pisano, Fabio; Heine, Wiebke; Pasztoi, Maria; Rosenheinrich, Maik; Nuss, Aaron M; Pils, Marina C; Prinz, Immo; Förster, Reinhold; Huehn, Jochen; et al. (2017-09-15)
    To successfully limit pathogen dissemination, an immunological link between the entry tissue of the pathogen and the underlying secondary lymphoid organs (SLOs) needs to be established to prime adaptive immune responses. Here, the prerequisite of CCR7 to mount host immune responses within SLOs during gastrointestinal Yersinia pseudotuberculosis infection to limit pathogen spread was investigated.
  • Microbiota Normalization Reveals that Canonical Caspase-1 Activation Exacerbates Chemically Induced Intestinal Inflammation.

    Błażejewski, Adrian J; Thiemann, Sophie; Schenk, Alexander; Pils, Marina C; Gálvez, Eric J C; Roy, Urmi; Heise, Ulrike; de Zoete, Marcel R; Flavell, Richard A; Strowig, Till; et al. (2017-06-13)
    Inflammasomes play a central role in regulating intestinal barrier function and immunity during steady state and disease. Because the discoveries of a passenger mutation and a colitogenic microbiota in the widely used caspase-1-deficient mouse strain have cast doubt on previously identified direct functions of caspase-1, we reassessed the role of caspase-1 in the intestine. To this end, we generated Casp1(-/-) and Casp11(-/-) mice and rederived them into an enhanced barrier facility to standardize the microbiota. We found that caspase-11 does not influence caspase-1-dependent processing of IL-18 in homeostasis and during DSS colitis. Deficiency of caspase-1, but not caspase-11, ameliorated the severity of DSS colitis independent of microbiota composition. Ablation of caspase-1 in intestinal epithelial cells was sufficient to protect mice against DSS colitis. Moreover, Casp1(-/-) mice developed fewer inflammation-induced intestinal tumors than control mice. These data show that canonical inflammasome activation controls caspase-1 activity, contributing to exacerbation of chemical-induced colitis.
  • Degradable magnesium implant-associated infections by bacterial biofilms induce robust localized and systemic inflammatory reactions in a mouse model.

    Rahim, Muhammad Imran; Babbar, Anshu; Lienenklaus, Stefan; Pils, Marina; Rohde, M; Helmholtz Centre for infection research, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2017-06-01)
    Biomaterial-associated Pseudomonas aeruginosa biofilm infections constitute cascade of host immune reactions ultimately leading towards implant failure. Due to lack of relevant in vivo biofilm models, majority of the studies report host immune responses against free living or planktonic bacteria while bacteria in clinical situations live more frequently as biofilm communities than as single cells. Present study investigated host immune responses against biomaterial-associated P. aeruginosa biofilms in a clinically relevant mouse model. Previously, we reported metallic magnesium, a prospective biodegradable implant, to be permissive for bacterial biofilms in vivo even though it exhibits antibacterial properties in vitro. Therefore, magnesium was employed as biomaterial to investigate in vivo biofilm formation and associated host immune responses by using two P. aeruginosa strains and two mouse strains. P. aeruginosa formed biofilms on subcutaneously implanted magnesium discs. Non-invasive in vivo imaging indicated transient inflammatory responses at control sites whereas robust prolonged interferon-β (IFN-β) expression was observed from biofilms in a transgenic animal reporter. Further, immunohistology and electron microscopic results showed that bacterial biofilms were located in two dimensions immediately on the implant surface and at a short distance in the adjacent tissue. These biofilms were surrounded by inflammatory cells (mainly polymorphonuclear cells) as compared to controls. Interestingly, even though the number of live bacteria in various organs remained below detectable levels, splenomegaly indicated systemic inflammatory processes. Overall, these findings confirmed the resistance of biofilm infections in vivo to potentially antibacterial properties of magnesium degradation products. In vivo imaging and histology indicated the induction of both, local and systemic host inflammatory responses against P. aeruginosa biofilms. Even though the innate host immune defenses could not eliminate the local infection for up to two weeks, there was no apparent systemic bacteremia and all animals investigated survived the infection.
  • CD4 T Cell Dependent Colitis Exacerbation Following Re-Exposure of Mycobacterium avium ssp. paratuberculosis.

    Suwandi, Abdulhadi; Bargen, Imke; Pils, Marina C; Krey, Martina; Zur Lage, Susanne; Singh, Anurag K; Basler, Tina; Falk, Christine S; Seidler, Ursula; Hornef, Mathias W; et al. (2017)
    Mycobacterium avium ssp. paratuberculosis (MAP) is the causative agent of Johne's disease (JD), a chronic inflammatory bowel disease of cattle characterized by intermittent to chronic diarrhea. In addition, MAP has been isolated from Crohn's disease (CD) patients. The impact of MAP on severity of clinical symptoms in JD as well as its role in CD are yet unknown. We have previously shown that MAP is able to colonize inflamed enteric tissue and to exacerbate the inflammatory tissue response (Suwandi et al., 2014). In the present study, we analyzed how repeated MAP administration influences the course of dextran sulfate sodium (DSS)-induced colitis. In comparison to mice exposed to DSS or MAP only, repeated exposure of DSS-treated mice to MAP (DSS/MAP) revealed a significantly enhanced clinical score, reduction of colon length as well as severe CD4(+) T cell infiltration into the colonic lamina propria. Functional analysis identified a critical role of CD4(+) T cells in the MAP-induced disease exacerbation. Additionally, altered immune responses were observed when closely related mycobacteria species such as M. avium ssp. avium and M. avium ssp. hominissuis were administered. These data reveal the specific ability of MAP to aggravate intestinal inflammation and clinical symptoms. Overall, this phenotype is compatible with similar disease promoting capabilites of MAP in JD and CD.
  • Influence of internalin a murinisation on host resistance to orally acquired listeriosis in mice

    Bergmann, Silke; Beard, Philippa M; Pasche, Bastian; Lienenklaus, Stefan; Weiss, Siegfried; Gahan, Cormac G M; Schughart, Klaus; Lengeling, Andreas (2013-04-23)
    Abstract Background The bacterial surface protein internalin (InlA) is a major virulence factor of the food-born pathogen Listeria monocytogenes. It plays a critical role in the bacteria crossing the host intestinal barrier by a species-specific interaction with the cell adhesion molecule E-cadherin. In mice, the interaction of InlA with murine E-cadherin is impaired due to sequence-specific binding incompatibilities. We have previously used the approach of ‘murinisation’ to establish an oral listeriosis infection model in mice by exchanging two amino acid residues in InlA. This dramatically increases binding to mouse E-cadherin. In the present study, we have used bioluminescent murinised and non-murinised Listeria strains to examine the spatiotemporal dissemination of Listeria in four diverse mouse genetic backgrounds after oral inoculation. Results The murinised Listeria monocytogenes strain showed enhanced invasiveness and induced more severe infections in all four investigated mouse inbred strains compared to the non-murinised Listeria strain. We identified C57BL/6J mice as being most resistant to orally acquired listeriosis whereas C3HeB/FeJ, A/J and BALB/cJ mice were found to be most susceptible to infection. This was reflected in faster kinetics of Listeria dissemination, higher bacterial loads in internal organs, and elevated serum levels of IL-6, IFN-γ, TNF-α and CCL2 in the susceptible strains as compared to the resistant C57BL/6J strain. Importantly, murinisation of InlA did not cause enhanced invasion of Listeria monocytogenes into the brain. Conclusion Murinised Listeria are able to efficiently cross the intestinal barrier in mice from diverse genetic backgrounds. However, expression of murinized InlA does not enhance listerial brain invasion suggesting that crossing of the blood brain barrier and crossing of the intestinal epithelium are achieved by Listeria monocytogenes through different molecular mechanisms.