• Genetic determinants of Pseudomonas aeruginosa fitness during biofilm growth.

      Schinner, Silvia; Engelhardt, Florian; Preusse, Matthias; Thöming, Janne Gesine; Tomasch, Jürgen; Häussler, Susanne; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Elsevier, 2020-04-02)
      Pseudomonas aeruginosa is an environmental bacterium and an opportunistic human pathogen. It is also a well-established model organism to study bacterial adaptation to stressful conditions, such as those encountered during an infection process in the human host. Advancing knowledge on P. aeruginosa adaptation to biofilm growth conditions is bound to reveal novel strategies and targets for the treatment of chronic biofilm-associated infections. Here, we generated transposon insertion libraries in three P. aeruginosa strain backgrounds and determined the relative frequency of each insertion following biofilm growth using transposon sequencing. We demonstrate that in general the SOS response, several tRNA modifying enzymes as well as adaptation to microaerophilic growth conditions play a key role in bacterial survival under biofilm growth conditions. On the other hand, presence of genes involved in motility and PQS signaling were less important during biofilm growth. Several mutants exhibiting transposon insertions in genes detected in our screen were validated for their biofilm growth capabilities and biofilm specific transcriptional responses using independently generated transposon mutants. Our results provide new insights into P. aeruginosa adaptation to biofilm growth conditions. The detection of previously unknown determinants of biofilm survival supports the use of transposon insertion sequencing as a global genomic technology for understanding the establishment of difficult to treat biofilm-associated infections.
    • Organism-specific depletion of highly abundant RNA species from bacterial total RNA.

      Engelhardt, Florian; Tomasch, Jürgen; Häussler, Susanne; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Microbiology Society, 2020-09-09)
      High-throughput sequencing has become a standard tool for transcriptome analysis. The depletion of overrepresented RNA species from sequencing libraries plays a key role in establishing potent and cost-efficient RNA-seq routines. Commercially available kits are known to obtain good results for the reduction of ribosomal RNA (rRNA). However, we found that the transfer-messenger RNA (tmRNA) was frequently highly abundant in rRNA-depleted samples of Pseudomonas aeruginosa , consuming up to 25 % of the obtained reads. The tmRNA fraction was particularly high in samples taken from stationary cultures. This suggests that overrepresentation of this RNA species reduces the mRNA fraction when cells are grown under challenging conditions. Here, we present an RNase-H-based depletion protocol that targets the tmRNA in addition to ribosomal RNAs. We were able to increase the mRNA fraction to 93-99% and therefore outperform not only the commercially Ribo-off kit (Vazyme) operating by the same principle but also the formerly widely used Ribo-Zero kit (Illumina). Maximizing the read share of scientifically interesting RNA species enhances the discriminatory potential of next-generation RNA-seq experiments and, therefore, can contribute to a better understanding of the transcriptomic landscape of bacterial pathogens and their used mechanisms in host infection.