• Complete Sequence of Probiotic Symbioflor 2 Escherichia coli Strain G3/10 and Draft Sequences of Symbioflor 2 E. coli Strains G1/2, G4/9, G5, G6/7, and G8.

      Zschüttig, Anke; Auerbach, Christian; Meltke, Simone; Eichhorn, Christin; Brandt, Manuela; Blom, Jochen; Goesmann, Alexander; Jarek, Michael; Scharfe, Maren; Zimmermann, Kurt; et al. (2015)
      The complete genome of probiotic Escherichia coli strain G3/10 is presented here. In addition, the probiotic E. coli strains G1/2, G4/9, G5, G6/7, and G8 are presented in draft form. These six strains together comprise the probiotic product Symbioflor 2 (DSM 17252).
    • Engineered Salmonella enterica serovar Typhimurium overcomes limitations of anti-bacterial immunity in bacteria-mediated tumor therapy

      Felgner, Sebastian; Kocijancic, Dino; Frahm, Michael; Heise, Ulrike; Rohde, Manfred; Zimmermann, Kurt; Falk, Christine; Erhardt, Marc; Weiss, Siegfried; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr.7, 38124 Braunschweig, Germany.; et al. (2017-09-29)
    • Local application of bacteria improves safety of Salmonella-mediated tumor therapy and retains advantages of systemic infection.

      Kocijancic, Dino; Felgner, Sebastian; Schauer, Tim; Frahm, Michael; Heise, Ulrike; Zimmermann, Kurt; Erhardt, Marc; Weiss, Siegfried; Helmholtz Centre for infection research, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2017-06-07)
      Cancer is a devastating disease and a large socio-economic burden. Novel therapeutic solutions are on the rise, although a cure remains elusive. Application of microorganisms represents an ancient therapeutic strategy, lately revoked and refined via simultaneous attenuation and amelioration of pathogenic properties. Salmonella Typhimurium has prevailed in preclinical development. Yet, using virulent strains for systemic treatment might cause severe side effects. In the present study, we highlight a modified strain based on Salmonella Typhimurium UK-1 expressing hexa-acylated Lipid A. We corroborate improved anti-tumor properties of this strain and investigate to which extent an intra-tumoral (i.t.) route of infection could help improve safety and retain advantages of systemic intravenous (i.v.) application. Our results show that i.t. infection exhibits therapeutic efficacy against CT26 and F1.A11 tumors similar to a systemic route of inoculation. Moreover, i.t. application allows extensive dose titration without compromising tumor colonization. Adverse colonization of healthy organs was generally reduced via i.t. infection and accompanied by less body weight loss of the murine host. Despite local application, adjuvanticity remained, and a CT26-specific CD8+ T cell response was effectively stimulated. Most interestingly, also secondary tumors could be targeted with this strategy, thereby extending the unique tumor targeting ability of Salmonella. The i.t. route of inoculation may reap the benefits of systemic infection and aid in safety assurance while directing potency of an oncolytic vector to where it is most needed, namely the primary tumor.
    • Therapy of solid tumors using probiotic Symbioflor-2: restraints and potential.

      Kocijancic, Dino; Felgner, Sebastian; Frahm, Michael; Komoll, Ronja-Melinda; Iljazovic, Aida; Pawar, Vinay; Rohde, M; Heise, Ulrike; Zimmermann, Kurt; Gunzer, Florian; et al. (2016-04-19)
      To date, virulent bacteria remain the basis of most bacteria mediated cancer therapies. For clinical application attenuation is required. However, this might result in a drastically lowered therapeutic capacity. Herein we argue that the E. coli probiotic Symbioflor-2, with a history of safe application may constitute a viable tumor therapeutic candidate. We demonstrate that Symbioflor-2 displays a highly specific tumor targeting ability as determined in murine CT26 and RenCa tumor models. The excellent specificity was ascribed to reduced levels of adverse colonization. A high safety standard was demonstrated in WT and Rag1-/- mice. Thus, Symbioflor-2 may represent an ideal tumor targeting delivery system for therapeutic molecules. Moreover, Symbioflor-2 was capable of inducing CT26 tumor clearance as result of an adjuvant effect on tumor specific CD8+ T cells analogous to the Salmonella variant SL7207. However, lower therapeutic efficacy against RenCa tumors suggested a generally reduced therapeutic potency for probiotics. Interestingly, concurrent depletion of Gr-1+ or Ly6G+ cells installed therapeutic efficacy equal to SL7207, thus highlighting the role of innate effector cells in restraining the anti-tumor effects of Symbioflor-2. Collectively, our findings argue for a strategy of safe strain application and a more sustainable use of bacteria as a delivery system for therapeutic molecules.