• The Activation of IL-1-Induced Enhancers Depends on TAK1 Kinase Activity and NF-κB p65.

      Jurida, Liane; Soelch, Johanna; Bartkuhn, Marek; Handschick, Katja; Müller, Helmut; Newel, Doris; Weber, Axel; Dittrich-Breiholz, Oliver; Schneider, Heike; Bhuju, Sabin; et al. (2015-02-04)
      The inflammatory gene response requires activation of the protein kinase TAK1, but it is currently unknown how TAK1-derived signals coordinate transcriptional programs in the genome. We determined the genome-wide binding of the TAK1-controlled NF-κB subunit p65 in relation to active enhancers and promoters of transcribed genes by chromatin immunoprecipitation sequencing (ChIP-seq) experiments. Out of 35,000 active enhancer regions, 410 H3K4me1-positive enhancers show interleukin 1 (IL-1)-induced H3K27ac and p65 binding. Inhibition of TAK1 or IKK2 or depletion of p65 blocked inducible enhancer activation and gene expression. As exemplified by the CXC chemokine cluster located on chromosome 4, the TAK1-p65 pathway also regulates the recruitment kinetics of the histone acetyltransferase CBP, of NF-κB p50, and of AP-1 transcription factors to both promoters and enhancers. This study provides a high-resolution view of epigenetic changes occurring during the IL-1 response and allows the genome-wide identification of a distinct class of inducible p65 NF-κB-dependent enhancers in epithelial cells.
    • Mouse SAMHD1 Has Antiretroviral Activity and Suppresses a Spontaneous Cell-Intrinsic Antiviral Response.

      Behrendt, Rayk; Schumann, Tina; Gerbaulet, Alexander; Nguyen, Laura A; Schubert, Nadja; Alexopoulou, Dimitra; Berka, Ursula; Lienenklaus, Stefan; Peschke, Katrin; Gibbert, Kathrin; et al. (2013-08-29)
      Aicardi-Goutières syndrome (AGS), a hereditary autoimmune disease, clinically and biochemically overlaps with systemic lupus erythematosus (SLE) and, like SLE, is characterized by spontaneous type I interferon (IFN) production. The finding that defects of intracellular nucleases cause AGS led to the concept that intracellular accumulation of nucleic acids triggers inappropriate production of type I IFN and autoimmunity. AGS can also be caused by defects of SAMHD1, a 3' exonuclease and deoxynucleotide (dNTP) triphosphohydrolase. Human SAMHD1 is an HIV-1 restriction factor that hydrolyzes dNTPs and decreases their concentration below the levels required for retroviral reverse transcription. We show in gene-targeted mice that also mouse SAMHD1 reduces cellular dNTP concentrations and restricts retroviral replication in lymphocytes, macrophages, and dendritic cells. Importantly, the absence of SAMHD1 triggered IFN-β-dependent transcriptional upregulation of type I IFN-inducible genes in various cell types indicative of spontaneous IFN production. SAMHD1-deficient mice may be instrumental for elucidating the mechanisms that trigger pathogenic type I IFN responses in AGS and SLE.