• Archival bone marrow trephines are suitable for high-throughput mutation analysis using next generation sequencing technology.

      Hasemeier, Britta; Geffers, Robert; Bartels, Stephan; Schlegelberger, Brigitte; Kreipe, Hans; Lehmann, Ulrich; Institute of Pathology, Medizinische Hochschule Hannover, Hannover, Germany (Ferrata Storti Foundation, 2013-09)
    • BCL6--regulated by AhR/ARNT and wild-type MEF2B--drives expression of germinal center markers MYBL1 and LMO2.

      Ding, Jie; Dirks, Wilhelm G; Ehrentraut, Stefan; Geffers, Robert; MacLeod, Roderick A F; Nagel, Stefan; Pommerenke, Claudia; Romani, Julia; Scherr, Michaela; Vaas, Lea A I; et al. (2015-06)
      Genetic heterogeneity is widespread in tumors, but poorly documented in cell lines. According to immunoglobulin hypermutation analysis, the diffuse large B-cell lymphoma cell line U-2932 comprises two subpopulations faithfully representing original tumor subclones. We set out to identify molecular causes underlying subclone-specific expression affecting 221 genes including surface markers and the germinal center oncogenes BCL6 and MYC. Genomic copy number variations explained 58/221 genes differentially expressed in the two U-2932 clones. Subclone-specific expression of the aryl-hydrocarbon receptor (AhR) and the resulting activity of the AhR/ARNT complex underlaid differential regulation of 11 genes including MEF2B. Knock-down and inhibitor experiments confirmed that AhR/ARNT regulates MEF2B, a key transcription factor for BCL6. AhR, MEF2B and BCL6 levels correlated not only in the U-2932 subclones but in the majority of 23 cell lines tested, indicting overexpression of AhR as a novel mechanism behind BCL6 diffuse large B-cell lymphoma. Enforced modulation of BCL6 affected 48/221 signature genes. Although BCL6 is known as a transcriptional repressor, 28 genes were up-regulated, including LMO2 and MYBL1 which, like BCL6, signify germinal center diffuse large B-cell lymphoma. Supporting the notion that BCL6 can induce gene expression, BCL6 and the majority of potential targets were co-regulated in a series of B-cell lines. In conclusion, genomic copy number aberrations, activation of AhR/ARNT, and overexpression of BCL6 are collectively responsible for differential expression of more than 100 genes in subclones of the U-2932 cell line. It is particularly interesting that BCL6 - regulated by AhR/ARNT and wild-type MEF2B - may drive expression of germinal center markers in diffuse large B-cell lymphoma.
    • Impact of MLL5 expression on decitabine efficacy and DNA methylation in acute myeloid leukemia.

      Yun, Haiyang; Damm, Frederik; Yap, Damian; Schwarzer, Adrian; Chaturvedi, Anuhar; Jyotsana, Nidhi; Lübbert, Michael; Bullinger, Lars; Döhner, Konstanze; Geffers, Robert; et al. (2014-06-03)
      Hypomethylating agents are widely used in patients with myelodysplastic syndromes and unfit patients with acute myeloid leukemia. However, it is not well understood why only some patients respond to hypomethylating agents. We found previously that the effect of decitabine on hematopoietic stem cell viability differed between Mll5 wildtype and null cells. We therefore investigated the role of MLL5 expression levels on outcome of acute myeloid leukemia patients who were treated with decitabine. MLL5 above the median expression level predicted longer overall survival independent of DNMT3A mutation status in bivariate analysis (median overall survival for high vs. low MLL5 expression, 292 vs. 167 days, P=.026). In patients who received 3 or more courses decitabine, high MLL5 expression and wildtype DNMT3A independently predicted improved overall survival (median overall survival for high vs. low MLL5 expression, 468 vs. 243 days, P=.012). In transformed murine cells, loss of Mll5 was associated with resistance to low-dose decitabine, less global DNA methylation in promoter regions, and reduced DNA demethylation upon decitabine treatment. Together, these data support our clinical observation of improved outcome in decitabine treated patients who express MLL5 at high levels, and suggest a mechanistic role of MLL5 in the regulation of DNA methylation.
    • Synergistic activity of IDH1 inhibitor BAY1436032 with azacitidine in IDH1 mutant acute myeloid leukemia.

      Chaturvedi, Anuhar; Gupta, Charu; Gabdoulline, Razif; Borchert, Nora M; Goparaju, Ramya; Kaulfuss, Stefan; Görlich, Kerstin; Schottmann, Renate; Othman, Basem; Welzenbach, Julia; et al. (Ferrraata Storti Foundation, 2020-04-02)
      Mutant IDH1 (mIDH1) inhibitors have shown single-agent activity in relapsed/refractory AML, though most patients eventually relapse. We evaluated the efficacy and molecular mechanism of the combination treatment with azacitidine, which is currently the standard of care in older AML patients, and mIDH1 inhibitor BAY1436032. Both compounds were evaluated in vivo as single agents and in combination with sequential (azacitidine, followed by BAY1436032) or simultaneous application in two human IDH1 mutated AML xenograft models. Combination treatment significantly prolonged survival compared to single agent or control treatment (P<.005). The sequential combination treatment depleted leukemia stem cells (LSC) by 470-fold. Interestingly, the simultaneous combination treatment depleted LSCs by 33,150-fold compared to control mice. This strong synergy is mediated through inhibition of MAPK/ERK and RB/E2F signaling. Our data strongly argues for the concurrent application of mIDH1 inhibitors and azacitidine and predicts improved outcome of this regimen in IDH1 mutated AML patients.