• 3DTF: a web server for predicting transcription factor PWMs using 3D structure-based energy calculations.

      Gabdoulline, R; Eckweiler, D; Kel, A; Stegmaier, P; Heinrich-Heine University of Duesseldorf, Universitaetstr. 1, 40225 Duesseldorf, Helmholtz Center for Infection Research, Inhoffenstrasse 7, 38234 Braunschweig, GeneXplain GmbH, Am Exer 10 b, 38302 Wolfenbüttel, BIOBASE GmbH, Halchtersche Str. 33, 38304 Wolfenbüttel, Germany and Institute of Chemical Biology and Fundamental Medicine, Russian Academy of Science, 10 Lavrentyev Ave, 630090 Novosibirsk, Russia. (2012-06-11)
      We present the webserver 3D transcription factor (3DTF) to compute position-specific weight matrices (PWMs) of transcription factors using a knowledge-based statistical potential derived from crystallographic data on protein-DNA complexes. Analysis of available structures that can be used to construct PWMs shows that there are hundreds of 3D structures from which PWMs could be derived, as well as thousands of proteins homologous to these. Therefore, we created 3DTF, which delivers binding matrices given the experimental or modeled protein-DNA complex. The webserver can be used by biologists to derive novel PWMs for transcription factors lacking known binding sites and is freely accessible at http://www.gene-regulation.com/pub/programs/3dtf/.
    • Chromatin binding of Gcn5 in Drosophila is largely mediated by CP190.

      Ali, Tamer; Krüger, Marcus; Bhuju, Sabin; Jarek, Michael; Bartkuhn, Marek; Renkawitz, Rainer; Hel,holtz Centre for infection research, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2016-11-29)
      Centrosomal 190 kDa protein (CP190) is a promoter binding factor, mediates long-range interactions in the context of enhancer-promoter contacts and in chromosomal domain formation. All Drosophila insulator proteins bind CP190 suggesting a crucial role in insulator function. CP190 has major effects on chromatin, such as depletion of nucleosomes, high nucleosomal turnover and prevention of heterochromatin expansion. Here, we searched for enzymes, which might be involved in CP190 mediated chromatin changes. Eighty percent of the genomic binding sites of the histone acetyltransferase Gcn5 are colocalizing with CP190 binding. Depletion of CP190 reduces Gcn5 binding to chromatin. Binding dependency was further supported by Gcn5 mediated co-precipitation of CP190. Gcn5 is known to activate transcription by histone acetylation. We used the dCas9 system to target CP190 or Gcn5 to a Polycomb repressed and H3K27me3 marked gene locus. Both, CP190 as well as Gcn5, activate this locus, thus supporting the model that CP190 recruits Gcn5 and thereby activates chromatin.
    • Cross talk between the response regulators PhoB and TctD allows for the integration of diverse environmental signals in Pseudomonas aeruginosa.

      Bielecki, Piotr; Jensen, Vanessa; Schulze, Wiebke; Gödeke, Julia; Strehmel, Janine; Eckweiler, Denitsa; Nicolai, Tanja; Bielecka, Agata; Wille, Thorsten; Gerlach, Roman G; et al. (2015-07-27)
      Two-component systems (TCS) serve as stimulus-response coupling mechanisms to allow organisms to adapt to a variety of environmental conditions. The opportunistic pathogen Pseudomonas aeruginosa encodes for more than 100 TCS components. To avoid unwanted cross-talk, signaling cascades are very specific, with one sensor talking to its cognate response regulator (RR). However, cross-regulation may provide means to integrate different environmental stimuli into a harmonized output response. By applying a split luciferase complementation assay, we identified a functional interaction of two RRs of the OmpR/PhoB subfamily, namely PhoB and TctD in P. aeruginosa. Transcriptional profiling, ChIP-seq analysis and a global motif scan uncovered the regulons of the two RRs as well as a quadripartite binding motif in six promoter regions. Phosphate limitation resulted in PhoB-dependent expression of the downstream genes, whereas the presence of TctD counteracted this activation. Thus, the integration of two important environmental signals e.g. phosphate availability and the carbon source are achieved by a titration of the relative amounts of two phosphorylated RRs that inversely regulate a common subset of genes. In conclusion, our results on the PhoB and TctD mediated two-component signal transduction pathways exemplify how P. aeruginosa may exploit cross-regulation to adapt bacterial behavior to complex environments.
    • Differential roles for MBD2 and MBD3 at methylated CpG islands, active promoters and binding to exon sequences.

      Günther, Katharina; Rust, Mareike; Leers, Joerg; Boettger, Thomas; Scharfe, Maren; Jarek, Michael; Bartkuhn, Marek; Renkawitz, Rainer; Institute for Genetics, Justus-Liebig-University, D35392 Giessen, Germany. (2013-03-01)
      The heterogeneous collection of nucleosome remodelling and deacetylation (NuRD) complexes can be grouped into the MBD2- or MBD3-containing complexes MBD2-NuRD and MBD3-NuRD. MBD2 is known to bind to methylated CpG sequences in vitro in contrast to MBD3. Although functional differences have been described, a direct comparison of MBD2 and MBD3 in respect to genome-wide binding and function has been lacking. Here, we show that MBD2-NuRD, in contrast to MBD3-NuRD, converts open chromatin with euchromatic histone modifications into tightly compacted chromatin with repressive histone marks. Genome-wide, a strong enrichment for MBD2 at methylated CpG sequences is found, whereas CpGs bound by MBD3 are devoid of methylation. MBD2-bound genes are generally lower expressed as compared with MBD3-bound genes. When depleting cells for MBD2, the MBD2-bound genes increase their activity, whereas MBD2 plus MBD3-bound genes reduce their activity. Most strikingly, MBD3 is enriched at active promoters, whereas MBD2 is bound at methylated promoters and enriched at exon sequences of active genes.
    • Genome-wide localization and expression profiling establish Sp2 as a sequence-specific transcription factor regulating vitally important genes.

      Terrados, Gloria; Finkernagel, Florian; Stielow, Bastian; Sadic, Dennis; Neubert, Juliane; Herdt, Olga; Krause, Michael; Scharfe, Maren; Jarek, Michael; Suske, Guntram; et al. (2012-09)
      The transcription factor Sp2 is essential for early mouse development and for proliferation of mouse embryonic fibroblasts in culture. Yet its mechanisms of action and its target genes are largely unknown. In this study, we have combined RNA interference, in vitro DNA binding, chromatin immunoprecipitation sequencing and global gene-expression profiling to investigate the role of Sp2 for cellular functions, to define target sites and to identify genes regulated by Sp2. We show that Sp2 is important for cellular proliferation that it binds to GC-boxes and occupies proximal promoters of genes essential for vital cellular processes including gene expression, replication, metabolism and signalling. Moreover, we identified important key target genes and cellular pathways that are directly regulated by Sp2. Most significantly, Sp2 binds and activates numerous sequence-specific transcription factor and co-activator genes, and represses the whole battery of cholesterol synthesis genes. Our results establish Sp2 as a sequence-specific regulator of vitally important genes.
    • Identification of tumor-specific Salmonella Typhimurium promoters and their regulatory logic.

      Leschner, Sara; Deyneko, Igor V; Lienenklaus, Stefan; Wolf, Kathrin; Bloecker, Helmut; Bumann, Dirk; Loessner, Holger; Weiss, Siegfried; Molecular Immunology, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124 Braunschweig, Germany. sara.leschner@helmholtz-hzi.de (2012-04)
      Conventional cancer therapies are often limited in effectiveness and exhibit strong side effects. Therefore, alternative therapeutic strategies are demanded. The employment of tumor-colonizing bacteria that exert anticancer effects is such a novel approach that attracts increasing attention. For instance, Salmonella enterica serovar Typhimurium has been used in many animal tumor models as well as in first clinical studies. These bacteria exhibit inherent tumoricidal effects. In addition, they can be used to deliver therapeutic agents. However, bacterial expression has to be restricted to the tumor to prevent toxic substances from harming healthy tissue. Therefore, we screened an S. Typhimurium promoter-trap library to identify promoters that exclusively drive gene expression in the cancerous tissue. Twelve elements could be detected that show reporter gene expression in tumors but not in spleen and liver. In addition, a DNA motif was identified that appears to be necessary for tumor specificity. Now, such tumor-specific promoters can be used to safely express therapeutic proteins by tumor-colonizing S. Typhimurium directly in the neoplasia.
    • Recruitment of the ATP-dependent chromatin remodeler dMi-2 to the transcribed region of active heat shock genes.

      Mathieu, Eve-Lyne; Finkernagel, Florian; Murawska, Magdalena; Scharfe, Maren; Jarek, Michael; Brehm, Alexander; Institute for Molecular Biology and Tumor Research, Philipps-University, Emil-Mannkopff-Strasse 2, 35037 Marburg, Germany. (2012-06)
      The ATP-dependent chromatin remodeler dMi-2 can play both positive and negative roles in gene transcription. Recently, we have shown that dMi-2 is recruited to the hsp70 gene in a heat shock-dependent manner, and is required to achieve high transcript levels. Here, we use chromatin immunoprecipitation sequencing (ChIP-Seq) to identify other chromatin regions displaying increased dMi-2 binding upon heat shock and to characterize the distribution of dMi-2 over heat shock genes. We show that dMi-2 is recruited to the body of at least seven heat shock genes. Interestingly, dMi-2 binding extends several hundred base pairs beyond the polyadenylation site into the region where transcriptional termination occurs. We find that dMi-2 does not associate with the entire nucleosome-depleted hsp70 locus 87A. Rather, dMi-2 binding is restricted to transcribed regions. Our results suggest that dMi-2 distribution over active heat shock genes are determined by transcriptional activity.
    • SUMOylation of the polycomb group protein L3MBTL2 facilitates repression of its target genes.

      Stielow, Christina; Stielow, Bastian; Finkernagel, Florian; Scharfe, Maren; Jarek, Michael; Suske, Guntram (2013-12-24)
      Lethal(3) malignant brain tumour like 2 (L3MBTL2) is an integral component of the polycomb repressive complex 1.6 (PRC1.6) and has been implicated in transcriptional repression and chromatin compaction. Here, we show that L3MBTL2 is modified by SUMO2/3 at lysine residues 675 and 700 close to the C-terminus. SUMOylation of L3MBTL2 neither affected its repressive activity in reporter gene assays nor it's binding to histone tails in vitro. In order to analyse whether SUMOylation affects binding of L3MBTL2 to chromatin, we performed ChIP-Seq analysis with chromatin of wild-type HEK293 cells and with chromatin of HEK293 cells stably expressing either FLAG-tagged SUMOylation-competent or SUMOylation-defective L3MBTL2. Wild-type FLAG-L3MBTL2 and the SUMOylation-defective FLAG-L3MBTL2 K675/700R mutant essentially occupied the same sites as endogenous L3MBTL2 suggesting that SUMOylation of L3MBTL2 does not affect chromatin binding. However, a subset of L3MBTL2-target genes, particularly those with low L3MBTL2 occupancy including pro-inflammatory genes, was de-repressed in cells expressing the FLAG-L3MBTL2 K675/700R mutant. Finally, we provide evidence that SUMOylation of L3MBTL2 facilitates repression of these PRC1.6-target genes by balancing the local H2Aub1 levels established by the ubiquitinating enzyme RING2 and the de-ubiquitinating PR-DUB complex.