• Cellular retinaldehyde-binding protein (CRALBP) is a direct downstream target of transcription factor Pax6.

      Boppana, Sridhar; Scheglov, Alexander; Geffers, Robert; Tarabykin, Victor; Max-Planck-Institute for Experimental Medicine, Hermann-Rein Strasse 3, 37075 Göttingen, Germany. boppansr@umdnj.edu (2012-02)
      Transcription factor Pax6 plays an essential role in the expression of other transcription factors, cell adhesion molecules and is crucial for neurogenesis in the developing forebrain. Analysis of gene expression profiles through microarray experiments in Pax6 mutants allowed us to focus on CRALBP, one of the many genes that were downregulated.
    • Genome-wide localization and expression profiling establish Sp2 as a sequence-specific transcription factor regulating vitally important genes.

      Terrados, Gloria; Finkernagel, Florian; Stielow, Bastian; Sadic, Dennis; Neubert, Juliane; Herdt, Olga; Krause, Michael; Scharfe, Maren; Jarek, Michael; Suske, Guntram; et al. (2012-09)
      The transcription factor Sp2 is essential for early mouse development and for proliferation of mouse embryonic fibroblasts in culture. Yet its mechanisms of action and its target genes are largely unknown. In this study, we have combined RNA interference, in vitro DNA binding, chromatin immunoprecipitation sequencing and global gene-expression profiling to investigate the role of Sp2 for cellular functions, to define target sites and to identify genes regulated by Sp2. We show that Sp2 is important for cellular proliferation that it binds to GC-boxes and occupies proximal promoters of genes essential for vital cellular processes including gene expression, replication, metabolism and signalling. Moreover, we identified important key target genes and cellular pathways that are directly regulated by Sp2. Most significantly, Sp2 binds and activates numerous sequence-specific transcription factor and co-activator genes, and represses the whole battery of cholesterol synthesis genes. Our results establish Sp2 as a sequence-specific regulator of vitally important genes.
    • Identification of the alternative sigma factor SigX regulon and its implications for Pseudomonas aeruginosa pathogenicity.

      Blanka, Andrea; Schulz, Sebastian; Eckweiler, Denitsa; Franke, Raimo; Bielecka, Agata; Nicolai, Tanja; Casilag, Fiordiligie; Düvel, Juliane; Abraham, Wolf-Rainer; Kaever, Volkhard; et al. (2014-01)
      Pseudomonas aeruginosa is distinguished by its broad metabolic diversity and its remarkable capability for adaptation, which relies on a large collection of transcriptional regulators and alternative sigma (σ) factors. The largest group of alternative σ factors is that of the extracytoplasmic function (ECF) σ factors, which control key transduction pathways for maintenance of envelope homeostasis in response to external stress and cell growth. In addition, there are specific roles of alternative σ factors in regulating the expression of virulence and virulence-associated genes. Here, we analyzed a deletion mutant of the ECF σ factor SigX and applied mRNA profiling to define the SigX-dependent regulon in P. aeruginosa in response to low-osmolarity-medium conditions. Furthermore, the combination of transcriptional data with chromatin immunoprecipitation (ChIP) followed by high-throughput sequencing (ChIP-seq) led to the identification of the DNA binding motif of SigX. Genome-wide mapping of SigX-binding regions revealed enrichment of downstream genes involved in fatty acid biosynthesis, type III secretion, swarming and cyclic di-GMP (c-di-GMP) signaling. In accordance, a sigX deletion mutant exhibited altered fatty acid composition of the cell membrane, reduced cytotoxicity, impaired swarming activity, elevated c-di-GMP levels, and increased biofilm formation. In conclusion, a combination of ChIP-seq with transcriptional profiling and bioinformatic approaches to define consensus DNA binding sequences proved to be effective for the elucidation of the regulon of the alternative σ factor SigX, revealing its role in complex virulence-associated phenotypes in P. aeruginosa.
    • Strong interferon-inducing capacity of a highly virulent variant of influenza A virus strain PR8 with deletions in the NS1 gene.

      Kochs, Georg; Martínez-Sobrido, Luis; Lienenklaus, Stefan; Weiss, Siegfried; García-Sastre, Adolfo; Staeheli, Peter; Department of Virology, University of Freiburg, D-79008 Freiburg, Germany. georg.kochs@uniklinik-freiburg.de (2009-12)
      Influenza viruses lacking the interferon (IFN)-antagonistic non-structural NS1 protein are strongly attenuated. Here, we show that mutants of a highly virulent variant of A/PR/8/34 (H1N1) carrying either a complete deletion or C-terminal truncations of NS1 were far more potent inducers of IFN in infected mice than NS1 mutants derived from standard A/PR/8/34. Efficient induction of IFN correlated with successful initial virus replication in mouse lungs, indicating that the IFN response is boosted by enhanced viral activity. As the new NS1 mutants can be handled in standard biosafety laboratories, they represent convenient novel tools for studying virus-induced IFN expression in vivo.