• Listeria monocytogenes desensitizes immune cells to subsequent Ca2+ signaling via listeriolysin O-induced depletion of intracellular Ca2+ stores.

      Gekara, Nelson O; Groebe, Lothar; Viegas, Nuno; Weiss, Siegfried; Department of Molecular Immunology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany. nelson.gekara@helmholtz-hzi.de (2008-02)
      Listeriolysin O (LLO), the pore-forming toxin of Listeria monocytogenes, is a prototype of the cholesterol-dependent cytolysins (CDCs) secreted by several pathogenic and nonpathogenic gram-positive bacteria. In addition to mediating the escape of the bacterium into the cytosol, this toxin is generally believed to be a central player in host-pathogen interactions during L. monocytogenes infection. LLO triggers the influx of Ca(2+) into host cells as well as the release of Ca(2+) from intracellular stores. Thus, many of the cellular responses induced by LLO are related to calcium signaling. Interestingly, in this study, we report that prolonged exposure to LLO desensitizes cells to Ca(2+) mobilization upon subsequent stimulations with LLO. Cells preexposed to LLO-positive L. monocytogenes but not to the LLO-deficient Deltahly mutant were found to be highly refractory to Ca(2+) induction in response to receptor-mediated stimulation. Such cells also exhibited diminished Ca(2+) signals in response to stimulation with LLO and thapsigargin. The presented results suggest that this phenomenon is due to the depletion of intracellular Ca(2+) stores. The ability of LLO to desensitize immune cells provides a significant hint about the possible role played by CDCs in the evasion of the immune system by bacterial pathogens.
    • Listeria monocytogenes induces T cell receptor unresponsiveness through pore-forming toxin listeriolysin O.

      Gekara, Nelson O; Zietara, Natalia; Geffers, Robert; Weiss, Siegfried; Molecular Immunology, Helmholtz Center for Infection Research, Braunschweig, Germany. nelson.gekara@mims.umu.se (2010-12-01)
      The success of many pathogens relies on their ability to circumvent the innate and adaptive immune defenses. How bacterial pathogens subvert adaptive immune defenses is not clear. Cholesterol-dependent cytolysins (CDCs) represent an expansive family of homologous pore-forming toxins that are produced by more than 20 gram-positive bacterial species. Listeriolysin O (LLO), a prototype CDC, is the main virulence factor of Listeria monocytogenes.
    • Potentiation of epithelial innate host responses by intercellular communication.

      Dolowschiak, Tamas; Chassin, Cécilia; Ben Mkaddem, Sanae; Fuchs, Thilo M; Weiss, Siegfried; Vandewalle, Alain; Hornef, Mathias W; Hannover Medical School, Hannover, Germany. (2010)
      The epithelium efficiently attracts immune cells upon infection despite the low number of pathogenic microbes and moderate levels of secreted chemokines per cell. Here we examined whether horizontal intercellular communication between cells may contribute to a coordinated response of the epithelium. Listeria monocytogenes infection, transfection, and microinjection of individual cells within a polarized intestinal epithelial cell layer were performed and activation was determined at the single cell level by fluorescence microscopy and flow cytometry. Surprisingly, chemokine production after L. monocytogenes infection was primarily observed in non-infected epithelial cells despite invasion-dependent cell activation. Whereas horizontal communication was independent of gap junction formation, cytokine secretion, ion fluxes, or nitric oxide synthesis, NADPH oxidase (Nox) 4-dependent oxygen radical formation was required and sufficient to induce indirect epithelial cell activation. This is the first report to describe epithelial cell-cell communication in response to innate immune activation. Epithelial communication facilitates a coordinated infectious host defence at the very early stage of microbial infection.
    • Recruitment of the ATP-dependent chromatin remodeler dMi-2 to the transcribed region of active heat shock genes.

      Mathieu, Eve-Lyne; Finkernagel, Florian; Murawska, Magdalena; Scharfe, Maren; Jarek, Michael; Brehm, Alexander; Institute for Molecular Biology and Tumor Research, Philipps-University, Emil-Mannkopff-Strasse 2, 35037 Marburg, Germany. (2012-06)
      The ATP-dependent chromatin remodeler dMi-2 can play both positive and negative roles in gene transcription. Recently, we have shown that dMi-2 is recruited to the hsp70 gene in a heat shock-dependent manner, and is required to achieve high transcript levels. Here, we use chromatin immunoprecipitation sequencing (ChIP-Seq) to identify other chromatin regions displaying increased dMi-2 binding upon heat shock and to characterize the distribution of dMi-2 over heat shock genes. We show that dMi-2 is recruited to the body of at least seven heat shock genes. Interestingly, dMi-2 binding extends several hundred base pairs beyond the polyadenylation site into the region where transcriptional termination occurs. We find that dMi-2 does not associate with the entire nucleosome-depleted hsp70 locus 87A. Rather, dMi-2 binding is restricted to transcribed regions. Our results suggest that dMi-2 distribution over active heat shock genes are determined by transcriptional activity.