• Antibodies against C-reactive protein cross-react with 60-kilodalton heat shock proteins.

      Udvarnoki, Katalin; Cervenak, László; Uray, Katalin; Hudecz, Ferenc; Kacskovics, Imre; Spallek, Ralf; Singh, Mahavir; Füst, George; Prohászka, Zoltán; Third Department of Medicine, Semmelweis University, H-1125 Budapest, Kútvölgyi st. 4, Hungary. (2007-04)
      C-reactive protein (CRP) is an acute-phase reactant frequently used in histochemistry as a marker of ongoing inflammation. Furthermore, CRP is a powerful biomarker for the prediction of coronary artery disease risk. Heat-shock protein 60 (Hsp60) and CRP are complement-activating molecules, and the effect of their interactions on the regulation of complement activation was studied. However, during the first experiments, we learned that polyclonal anti-CRP antibodies cross-react with Hsp60. Therefore, the aim of our present study was to analyze the cross-reactivity of anti-CRP antibodies (Ab) with Hsp60 in solid-phase enzyme immune assays, in epitope studies using a series of overlapping synthetic peptides, and in Ouchterlony analyses. We found that three different commercial rabbit polyclonal antibodies and two monoclonal (9C9 and CRP-8) anti-CRP antibodies specifically recognize recombinant human Hsp60 and recombinant Mycobacterium tuberculosis Hsp65, respectively. Hsp60 was found to inhibit the binding of anti-CRP polyclonal Ab to Hsp60. Six epitope regions of Hsp60 were recognized by the anti-CRP antibodies, and one region (amino acids [AA] 218 to 232) was recognized by monoclonal antibodies CRP-8 and 9C9. This epitope region of Hsp60 displays 26.6% amino acid identity to CRP AA region 77 to 90. These data suggest that the B-cell epitopes shared between CRP and Hsp60 give rise to a true mimicry-based cross-reaction and the induction of cross-reactive antibodies. Our study underlines the importance of thorough study design and careful interpretation of results while using polyclonal anti-CRP antibodies for histochemistry, especially at low dilutions. Furthermore, analytical interference with Hsp60 in CRP assays should also be tested.
    • ATP inhibits the generation and function of regulatory T cells through the activation of purinergic P2X receptors.

      Schenk, Ursula; Frascoli, Michela; Proietti, Michele; Geffers, Robert; Traggiai, Elisabetta; Buer, Jan; Ricordi, Camillo; Westendorf, Astrid M; Grassi, Fabio; Institute for Research in Biomedicine, Bellinzona, Switzerland. (2011)
      Extracellular nucleotides are pleiotropic regulators of mammalian cell function. Adenosine triphosphate (ATP) released from CD4(+) helper T cells upon stimulation of the T cell receptor (TCR) contributes in an autocrine manner to the activation of mitogen-activated protein kinase (MAPK) signaling through purinergic P2X receptors. Increased expression of p2rx7, which encodes the purinergic receptor P2X7, is part of the transcriptional signature of immunosuppressive CD4(+)CD25(+) regulatory T cells (T(regs)). Here, we show that the activation of P2X7 by ATP inhibits the suppressive potential and stability of T(regs). The inflammatory cytokine interleukin-6 (IL-6) increased ATP synthesis and P2X7-mediated signaling in T(regs), which induced their conversion to IL-17-secreting T helper 17 (T(H)17) effector cells in vivo. Moreover, pharmacological antagonism of P2X receptors promoted the cell-autonomous conversion of naïve CD4(+) T cells into T(regs) after TCR stimulation. Thus, ATP acts as an autocrine factor that integrates stimuli from the microenvironment and cellular energetics to tune the developmental and immunosuppressive program of the T cell in adaptive immune responses.
    • BCL6--regulated by AhR/ARNT and wild-type MEF2B--drives expression of germinal center markers MYBL1 and LMO2.

      Ding, Jie; Dirks, Wilhelm G; Ehrentraut, Stefan; Geffers, Robert; MacLeod, Roderick A F; Nagel, Stefan; Pommerenke, Claudia; Romani, Julia; Scherr, Michaela; Vaas, Lea A I; et al. (2015-06)
      Genetic heterogeneity is widespread in tumors, but poorly documented in cell lines. According to immunoglobulin hypermutation analysis, the diffuse large B-cell lymphoma cell line U-2932 comprises two subpopulations faithfully representing original tumor subclones. We set out to identify molecular causes underlying subclone-specific expression affecting 221 genes including surface markers and the germinal center oncogenes BCL6 and MYC. Genomic copy number variations explained 58/221 genes differentially expressed in the two U-2932 clones. Subclone-specific expression of the aryl-hydrocarbon receptor (AhR) and the resulting activity of the AhR/ARNT complex underlaid differential regulation of 11 genes including MEF2B. Knock-down and inhibitor experiments confirmed that AhR/ARNT regulates MEF2B, a key transcription factor for BCL6. AhR, MEF2B and BCL6 levels correlated not only in the U-2932 subclones but in the majority of 23 cell lines tested, indicting overexpression of AhR as a novel mechanism behind BCL6 diffuse large B-cell lymphoma. Enforced modulation of BCL6 affected 48/221 signature genes. Although BCL6 is known as a transcriptional repressor, 28 genes were up-regulated, including LMO2 and MYBL1 which, like BCL6, signify germinal center diffuse large B-cell lymphoma. Supporting the notion that BCL6 can induce gene expression, BCL6 and the majority of potential targets were co-regulated in a series of B-cell lines. In conclusion, genomic copy number aberrations, activation of AhR/ARNT, and overexpression of BCL6 are collectively responsible for differential expression of more than 100 genes in subclones of the U-2932 cell line. It is particularly interesting that BCL6 - regulated by AhR/ARNT and wild-type MEF2B - may drive expression of germinal center markers in diffuse large B-cell lymphoma.
    • Deep transcriptome profiling of clinical Klebsiella pneumoniae isolates reveals strain and sequence type-specific adaptation.

      Bruchmann, Sebastian; Muthukumarasamy, Uthayakumar; Pohl, Sarah; Preusse, Matthias; Bielecka, Agata; Nicolai, Tanja; Hamann, Isabell; Hillert, Roger; Kola, Axel; Gastmeier, Petra; et al. (2015-11)
      Health-care-associated infections by multi-drug-resistant bacteria constitute one of the greatest challenges to modern medicine. Bacterial pathogens devise various mechanisms to withstand the activity of a wide range of antimicrobial compounds, among which the acquisition of carbapenemases is one of the most concerning. In Klebsiella pneumoniae, the dissemination of the K. pneumoniae carbapenemase is tightly connected to the global spread of certain clonal lineages. Although antibiotic resistance is a key driver for the global distribution of epidemic high-risk clones, there seem to be other adaptive traits that may explain their success. Here, we exploited the power of deep transcriptome profiling (RNA-seq) to shed light on the transcriptomic landscape of 37 clinical K. pneumoniae isolates of diverse phylogenetic origins. We identified a large set of 3346 genes which was expressed in all isolates. While the core-transcriptome profiles varied substantially between groups of different sequence types, they were more homogenous among isolates of the same sequence type. We furthermore linked the detailed information on differentially expressed genes with the clinically relevant phenotypes of biofilm formation and bacterial virulence. This allowed for the identification of a diminished expression of biofilm-specific genes within the low biofilm producing ST258 isolates as a sequence type-specific trait.
    • Differential roles for MBD2 and MBD3 at methylated CpG islands, active promoters and binding to exon sequences.

      Günther, Katharina; Rust, Mareike; Leers, Joerg; Boettger, Thomas; Scharfe, Maren; Jarek, Michael; Bartkuhn, Marek; Renkawitz, Rainer; Institute for Genetics, Justus-Liebig-University, D35392 Giessen, Germany. (2013-03-01)
      The heterogeneous collection of nucleosome remodelling and deacetylation (NuRD) complexes can be grouped into the MBD2- or MBD3-containing complexes MBD2-NuRD and MBD3-NuRD. MBD2 is known to bind to methylated CpG sequences in vitro in contrast to MBD3. Although functional differences have been described, a direct comparison of MBD2 and MBD3 in respect to genome-wide binding and function has been lacking. Here, we show that MBD2-NuRD, in contrast to MBD3-NuRD, converts open chromatin with euchromatic histone modifications into tightly compacted chromatin with repressive histone marks. Genome-wide, a strong enrichment for MBD2 at methylated CpG sequences is found, whereas CpGs bound by MBD3 are devoid of methylation. MBD2-bound genes are generally lower expressed as compared with MBD3-bound genes. When depleting cells for MBD2, the MBD2-bound genes increase their activity, whereas MBD2 plus MBD3-bound genes reduce their activity. Most strikingly, MBD3 is enriched at active promoters, whereas MBD2 is bound at methylated promoters and enriched at exon sequences of active genes.
    • Enantiomer-specific and paracrine leukemogenicity of mutant IDH metabolite 2-hydroxyglutarate.

      Chaturvedi, A; Araujo Cruz, M M; Jyotsana, N; Sharma, A; Goparaju, R; Schwarzer, A; Görlich, K; Schottmann, R; Struys, E A; Jansen, E E; et al. (2016-08)
      Canonical mutations in IDH1 and IDH2 produce high levels of the R-enantiomer of 2-hydroxyglutarate (R-2HG), which is a competitive inhibitor of α-ketoglutarate (αKG)-dependent enzymes and a putative oncometabolite. Mutant IDH1 collaborates with HoxA9 to induce monocytic leukemia in vivo. We used two mouse models and a patient-derived acute myeloid leukemia xenotransplantation (PDX) model to evaluate the in vivo transforming potential of R-2HG, S-2HG and αKG independent of the mutant IDH1 protein. We show that R-2HG, but not S-2HG or αKG, is an oncometabolite in vivo that does not require the mutant IDH1 protein to induce hyperleukocytosis and to accelerate the onset of murine and human leukemia. Thus, circulating R-2HG acts in a paracrine manner and can drive the expansion of many different leukemic and preleukemic clones that may express wild-type IDH1, and therefore can be a driver of clonal evolution and diversity. In addition, we show that the mutant IDH1 protein is a stronger oncogene than R-2HG alone when comparable intracellular R-2HG levels are achieved. We therefore propose R-2HG-independent oncogenic functions of mutant IDH1 that may need to be targeted in addition to R-2HG production to exploit the full therapeutic potential of IDH1 inhibition.
    • Evaluation of latent tuberculosis infection in patients with inflammatory arthropathies before treatment with TNF-alpha blocking drugs using a novel flow-cytometric interferon-gamma release assay.

      Dinser, R; Fousse, M; Sester, U; Albrecht, K; Singh, M; Köhler, H; Müller-Ladner, U; Sester, M; Department of Internal Medicine and Rheumatology, Justus-Liebig University of Giessen, Kerckhoff Clinic, Benekestrasse 2-8, D-61231 Bad Nauheim, Germany. r.dinser@kerckhoff-klinik.de (2008-02)
      OBJECTIVE: To compare the efficacy of the conventional skin test and a novel flow cytometric whole blood assay in the diagnosis of latent tuberculosis infection (LTBI) in patients with rheumatological diseases evaluated for treatment with TNF-alpha-blocking agents. METHODS: Prospective study of 97 consecutively enrolled patients, who were assessed for the presence of LTBI through clinical history, Mendel-Mantoux skin testing and chest X-ray. In addition, T-cell reactivity towards tuberculin (PPD, purified protein derivative) and the Mycobacterium tuberculosis-specific proteins ESAT-6 and CFP-10 was determined ex vivo using a flow cytometric whole blood assay. RESULTS: After standard screening, 15% of patients receiving TNF-alpha-blocking therapy were pretreated with isoniazide (INH), another 5% of patients did not receive TNF-alpha-blocking therapy because of LTBI. PPD-reactivity in the skin was observed in 14% of patients compared with 39% with the whole blood test. Analysis of the M. tuberculosis-specific response to ESAT-6 and CFP-10 revealed positive results in 16% of patients. Using a decision tree incorporating history, chest X-ray and either skin-test or ESAT-6/CFP-10 results, 18 or 22% of the patients, respectively, were classified as latently infected with M. tuberculosis. Four patients treated with INH because of a positive skin reaction did not show reactivity to ESAT-6/CFP-10 in the whole blood assays. Another six patients not pretreated with INH because of negative skin tests would have received INH, had the results of the whole blood assay been taken into account. CONCLUSION: The Mendel-Mantoux skin test has a low sensitivity and specificity for the diagnosis of LTBI in this cohort of patients, potentially resulting in both over- and under-treatment with prophylactic INH when compared with the flow cytometric analysis of whole blood T-cell reactivity to proteins specific to M. tuberculosis. Use of T-cell based in vitro tests may help to refine diagnostic testing for LTBI.
    • Genome-wide localization and expression profiling establish Sp2 as a sequence-specific transcription factor regulating vitally important genes.

      Terrados, Gloria; Finkernagel, Florian; Stielow, Bastian; Sadic, Dennis; Neubert, Juliane; Herdt, Olga; Krause, Michael; Scharfe, Maren; Jarek, Michael; Suske, Guntram; et al. (2012-09)
      The transcription factor Sp2 is essential for early mouse development and for proliferation of mouse embryonic fibroblasts in culture. Yet its mechanisms of action and its target genes are largely unknown. In this study, we have combined RNA interference, in vitro DNA binding, chromatin immunoprecipitation sequencing and global gene-expression profiling to investigate the role of Sp2 for cellular functions, to define target sites and to identify genes regulated by Sp2. We show that Sp2 is important for cellular proliferation that it binds to GC-boxes and occupies proximal promoters of genes essential for vital cellular processes including gene expression, replication, metabolism and signalling. Moreover, we identified important key target genes and cellular pathways that are directly regulated by Sp2. Most significantly, Sp2 binds and activates numerous sequence-specific transcription factor and co-activator genes, and represses the whole battery of cholesterol synthesis genes. Our results establish Sp2 as a sequence-specific regulator of vitally important genes.
    • Genome-Wide Sequencing Reveals MicroRNAs Downregulated in Cerebral Cavernous Malformations.

      Kar, Souvik; Bali, Kiran Kumar; Baisantry, Arpita; Geffers, Robert; Samii, Amir; Bertalanffy, Helmut; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr.7, 38124 Braunschweig, Germany. (2017-02)
      Cerebral cavernous malformations (CCM) are vascular lesions associated with loss-of-function mutations in one of the three genes encoding KRIT1 (CCM1), CCM2, and PDCD10. Recent understanding of the molecular mechanisms that lead to CCM development is limited. The role of microRNAs (miRNAs) has been demonstrated in vascular pathologies resulting in loss of tight junction proteins, increased vascular permeability and endothelial cell dysfunction. Since the relevance of miRNAs in CCM pathophysiology has not been elucidated, the primary aim of the study was to identify the miRNA-mRNA expression network associated with CCM. Using small RNA sequencing, we identified a total of 764 matured miRNAs expressed in CCM patients compared to the healthy brains. The expression of the selected miRNAs was validated by qRT-PCR, and the results were found to be consistent with the sequencing data. Upon application of additional statistical stringency, five miRNAs (let-7b-5p, miR-361-5p, miR-370-3p, miR-181a-2-3p, and miR-95-3p) were prioritized to be top CCM-relevant miRNAs. Further in silico analyses revealed that the prioritized miRNAs have a direct functional relation with mRNAs, such as MIB1, HIF1A, PDCD10, TJP1, OCLN, HES1, MAPK1, VEGFA, EGFL7, NF1, and ENG, which are previously characterized as key regulators of CCM pathology. To date, this is the first study to investigate the role of miRNAs in CCM pathology. By employing cutting edge molecular and in silico analyses on clinical samples, the current study reports global miRNA expression changes in CCM patients and provides a rich source of data set to understand detailed molecular machinery involved in CCM pathophysiology.
    • Genomewide analyses define different modes of transcriptional regulation by peroxisome proliferator-activated receptor-β/δ (PPARβ/δ).

      Adhikary, Till; Kaddatz, Kerstin; Finkernagel, Florian; Schönbauer, Anne; Meissner, Wolfgang; Scharfe, Maren; Jarek, Michael; Blöcker, Helmut; Müller-Brüsselbach, Sabine; Müller, Rolf; et al. (2011)
      Peroxisome proliferator-activated receptors (PPARs) are nuclear receptors with essential functions in lipid, glucose and energy homeostasis, cell differentiation, inflammation and metabolic disorders, and represent important drug targets. PPARs heterodimerize with retinoid X receptors (RXRs) and can form transcriptional activator or repressor complexes at specific DNA elements (PPREs). It is believed that the decision between repression and activation is generally governed by a ligand-mediated switch. We have performed genomewide analyses of agonist-treated and PPARβ/δ-depleted human myofibroblasts to test this hypothesis and to identify global principles of PPARβ/δ-mediated gene regulation. Chromatin immunoprecipitation sequencing (ChIP-Seq) of PPARβ/δ, H3K4me3 and RNA polymerase II enrichment sites combined with transcriptional profiling enabled the definition of 112 bona fide PPARβ/δ target genes showing either of three distinct types of transcriptional response: (I) ligand-independent repression by PPARβ/δ; (II) ligand-induced activation and/or derepression by PPARβ/δ; and (III) ligand-independent activation by PPARβ/δ. These data identify PPRE-mediated repression as a major mechanism of transcriptional regulation by PPARβ/δ, but, unexpectedly, also show that only a subset of repressed genes are activated by a ligand-mediated switch. Our results also suggest that the type of transcriptional response by a given target gene is connected to the structure of its associated PPRE(s) and the biological function of its encoded protein. These observations have important implications for understanding the regulatory PPAR network and PPARβ/δ ligand-based drugs.
    • A human-horse comparative map based on equine BAC end sequences.

      Leeb, Tosso; Vogl, Claus; Zhu, Baoli; de Jong, Pieter J; Binns, Matthew M; Chowdhary, Bhanu P; Scharfe, Maren; Jarek, Michael; Nordsiek, Gabriele; Schrader, Frank; et al. (2006-06)
      In an effort to increase the density of sequence-based markers for the horse genome we generated 9473 BAC end sequences (BESs) from the CHORI-241 BAC library with an average read length of 677 bp. BLASTN searches with the BESs revealed 4036 meaningful hits (E
    • Immune-responsive gene 1 protein links metabolism to immunity by catalyzing itaconic acid production.

      Michelucci, Alessandro; Cordes, Thekla; Ghelfi, Jenny; Pailot, Arnaud; Reiling, Norbert; Goldmann, Oliver; Binz, Tina; Wegner, André; Tallam, Aravind; Rausell, Antonio; et al. (2013-05-07)
      Immunoresponsive gene 1 (Irg1) is highly expressed in mammalian macrophages during inflammation, but its biological function has not yet been elucidated. Here, we identify Irg1 as the gene coding for an enzyme producing itaconic acid (also known as methylenesuccinic acid) through the decarboxylation of cis-aconitate, a tricarboxylic acid cycle intermediate. Using a gain-and-loss-of-function approach in both mouse and human immune cells, we found Irg1 expression levels correlating with the amounts of itaconic acid, a metabolite previously proposed to have an antimicrobial effect. We purified IRG1 protein and identified its cis-aconitate decarboxylating activity in an enzymatic assay. Itaconic acid is an organic compound that inhibits isocitrate lyase, the key enzyme of the glyoxylate shunt, a pathway essential for bacterial growth under specific conditions. Here we show that itaconic acid inhibits the growth of bacteria expressing isocitrate lyase, such as Salmonella enterica and Mycobacterium tuberculosis. Furthermore, Irg1 gene silencing in macrophages resulted in significantly decreased intracellular itaconic acid levels as well as significantly reduced antimicrobial activity during bacterial infections. Taken together, our results demonstrate that IRG1 links cellular metabolism with immune defense by catalyzing itaconic acid production.
    • Impact of 5-aza-2'-deoxycytidine and epigallocatechin-3-gallate for induction of human regulatory T cells.

      Kehrmann, Jan; Tatura, Roman; Zeschnigk, Michael; Probst-Kepper, Michael; Geffers, Robert; Steinmann, Joerg; Buer, Jan; Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Germany. (2014-07)
      The epigenetic regulation of transcription factor genes is critical for T-cell lineage specification. A specific methylation pattern within a conserved region of the lineage specifying transcription factor gene FOXP3, the Treg-specific demethylated region (TSDR), is restricted to regulatory T (Treg) cells and is required for stable expression of FOXP3 and suppressive function. We analysed the impact of hypomethylating agents 5-aza-2'-deoxycytidine and epigallocatechin-3-gallate on human CD4(+)  CD25(-) T cells for generating demethylation within FOXP3-TSDR and inducing functional Treg cells. Gene expression, including lineage-specifying transcription factors of the major T-cell lineages and their leading cytokines, functional properties and global transcriptome changes were analysed. The FOXP3-TSDR methylation pattern was determined by using deep amplicon bisulphite sequencing. 5-aza-2'-deoxycytidine induced FOXP3-TSDR hypomethylation and expression of the Treg-cell-specific genes FOXP3 and LRRC32. Proliferation of 5-aza-2'-deoxycytidine-treated cells was reduced, but the cells did not show suppressive function. Hypomethylation was not restricted to FOXP3-TSDR and expression of master transcription factors and leading cytokines of T helper type 1 and type 17 cells were induced. Epigallocatechin-3-gallate induced global DNA hypomethylation to a lesser extent than 5-aza-2'-deoxycitidine, but no relevant hypomethylation within FOXP3-TSDR or expression of Treg-cell-specific genes. Neither of the DNA methyltransferase inhibitors induced fully functional human Treg cells. 5-aza-2'-deoxycitidine-treated cells resembled Treg cells, but they did not suppress proliferation of responder cells, which is an essential capability to be used for Treg cell transfer therapy. Using a recently developed targeted demethylation technology might be a more promising approach for the generation of functional Treg cells.
    • Interleukin-2 improves amyloid pathology, synaptic failure and memory in Alzheimer's disease mice.

      Alves, Sandro; Churlaud, Guillaume; Audrain, Mickael; Michaelsen-Preusse, Kristin; Fol, Romain; Souchet, Benoit; Braudeau, Jérôme; Korte, Martin; Klatzmann, David; Cartier, Nathalie; et al. (2017-03-01)
      Interleukin-2 (IL-2)-deficient mice have cytoarchitectural hippocampal modifications and impaired learning and memory ability reminiscent of Alzheimer's disease. IL-2 stimulates regulatory T cells whose role is to control inflammation. As neuroinflammation contributes to neurodegeneration, we investigated IL-2 in Alzheimer's disease. Therefore, we investigated IL-2 levels in hippocampal biopsies of patients with Alzheimer's disease relative to age-matched control individuals. We then treated APP/PS1ΔE9 mice having established Alzheimer's disease with IL-2 for 5 months using single administration of an AAV-IL-2 vector. We first found decreased IL-2 levels in hippocampal biopsies of patients with Alzheimer's disease. In mice, IL-2-induced systemic and brain regulatory T cells expansion and activation. In the hippocampus, IL-2 induced astrocytic activation and recruitment of astrocytes around amyloid plaques, decreased amyloid-β42/40 ratio and amyloid plaque load, improved synaptic plasticity and significantly rescued spine density. Of note, this tissue remodelling was associated with recovery of memory deficits, as assessed in the Morris water maze task. Altogether, our data strongly suggest that IL-2 can alleviate Alzheimer's disease hallmarks in APP/PS1ΔE9 mice with established pathology. Therefore, this should prompt the investigation of low-dose IL-2 in Alzheimer's disease and other neuroinflammatory/neurodegenerative disorders.
    • Methylome analysis and integrative profiling of human HCCs identify novel protumorigenic factors.

      Neumann, Olaf; Kesselmeier, Miriam; Geffers, Robert; Pellegrino, Rossella; Radlwimmer, Bernhard; Hoffmann, Katrin; Ehemann, Volker; Schemmer, Peter; Schirmacher, Peter; Lorenzo Bermejo, Justo; et al. (2012-11)
      To identify new tumor-suppressor gene candidates relevant for human hepatocarcinogenesis, we performed genome-wide methylation profiling and vertical integration with array-based comparative genomic hybridization (aCGH), as well as expression data from a cohort of well-characterized human hepatocellular carcinomas (HCCs). Bisulfite-converted DNAs from 63 HCCs and 10 healthy control livers were analyzed for the methylation status of more than 14,000 genes. After defining the differentially methylated genes in HCCs, we integrated their DNA copy-number alterations as determined by aCGH data and correlated them with gene expression to identify genes potentially silenced by promoter hypermethylation. Aberrant methylation of candidates was further confirmed by pyrosequencing, and methylation dependency of silencing was determined by 5-aza-2'-deoxycytidine (5-aza-dC) treatment. Methylation profiling revealed 2,226 CpG sites that showed methylation differences between healthy control livers and HCCs. Of these, 537 CpG sites were hypermethylated in the tumor DNA, whereas 1,689 sites showed promoter hypomethylation. The hypermethylated set was enriched for genes known to be inactivated by the polycomb repressive complex 2, whereas the group of hypomethylated genes was enriched for imprinted genes. We identified three genes matching all of our selection criteria for a tumor-suppressor gene (period homolog 3 [PER3], insulin-like growth-factor-binding protein, acid labile subunit [IGFALS], and protein Z). PER3 was down-regulated in human HCCs, compared to peritumorous and healthy liver tissues. 5-aza-dC treatment restored PER3 expression in HCC cell lines, indicating that promoter hypermethylation was indeed responsible for gene silencing. Additionally, functional analysis supported a tumor-suppressive function for PER3 and IGFALS in vitro. CONCLUSION: The present study illustrates that vertical integration of methylation data with high-resolution genomic and transcriptomic data facilitates the identification of new tumor-suppressor gene candidates in human HCC.
    • The NF-κB-dependent and -independent transcriptome and chromatin landscapes of human coronavirus 229E-infected cells.

      Poppe, Michael; Wittig, Sascha; Jurida, Liane; Bartkuhn, Marek; Wilhelm, Jochen; Müller, Helmut; Beuerlein, Knut; Karl, Nadja; Bhuju, Sabin; Ziebuhr, John; et al. (2017-03)
      Coronavirus replication takes place in the host cell cytoplasm and triggers inflammatory gene expression by poorly characterized mechanisms. To obtain more insight into the signals and molecular events that coordinate global host responses in the nucleus of coronavirus-infected cells, first, transcriptome dynamics was studied in human coronavirus 229E (HCoV-229E)-infected A549 and HuH7 cells, respectively, revealing a core signature of upregulated genes in these cells. Compared to treatment with the prototypical inflammatory cytokine interleukin(IL)-1, HCoV-229E replication was found to attenuate the inducible activity of the transcription factor (TF) NF-κB and to restrict the nuclear concentration of NF-κB subunits by (i) an unusual mechanism involving partial degradation of IKKβ, NEMO and IκBα and (ii) upregulation of TNFAIP3 (A20), although constitutive IKK activity and basal TNFAIP3 expression levels were shown to be required for efficient virus replication. Second, we characterized actively transcribed genomic regions and enhancers in HCoV-229E-infected cells and systematically correlated the genome-wide gene expression changes with the recruitment of Ser5-phosphorylated RNA polymerase II and prototypical histone modifications (H3K9ac, H3K36ac, H4K5ac, H3K27ac, H3K4me1). The data revealed that, in HCoV-infected (but not IL-1-treated) cells, an extensive set of genes was activated without inducible p65 NF-κB being recruited. Furthermore, both HCoV-229E replication and IL-1 were shown to upregulate a small set of genes encoding immunomodulatory factors that bind p65 at promoters and require IKKβ activity and p65 for expression. Also, HCoV-229E and IL-1 activated a common set of 440 p65-bound enhancers that differed from another 992 HCoV-229E-specific enhancer regions by distinct TF-binding motif combinations. Taken together, the study shows that cytoplasmic RNA viruses fine-tune NF-κB signaling at multiple levels and profoundly reprogram the host cellular chromatin landscape, thereby orchestrating the timely coordinated expression of genes involved in multiple signaling, immunoregulatory and metabolic processes.
    • Optimizing Salmonella enterica serovar Typhimurium for bacteria-mediated tumor therapy.

      Felgner, Sebastian; Kocijancic, Dino; Frahm, Michael; Curtiss, Roy; Erhardt, Marc; Weiss, Siegfried; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2016)
      Bacteria-mediated tumor therapy using Salmonella enterica serovar Typhimurium is a therapeutic option with great potential. Numerous studies explored the potential of Salmonella Typhimurium for therapeutic applications, however reconciling safety with vectorial efficacy remains a major issue. Recently we have described a conditionally attenuated Salmonella vector that is based on genetic lipopolysaccharide modification. This vector combines strong attenuation with appropriate anti-tumor properties by targeting various cancerous tissues in vivo. Therefore, it was promoted as an anti-tumor agent. In this addendum, we summarize these findings and demonstrate additional optimization steps that may further improve the therapeutic efficacy of our vector strain.
    • Planning the human variome project: the Spain report.

      Kaput, Jim; Cotton, Richard G H; Hardman, Lauren; Watson, Michael; Al Aqeel, Aida I; Al-Aama, Jumana Y; Al-Mulla, Fahd; Alonso, Santos; Aretz, Stefan; Auerbach, Arleen D; et al. (2009-04)
      The remarkable progress in characterizing the human genome sequence, exemplified by the Human Genome Project and the HapMap Consortium, has led to the perception that knowledge and the tools (e.g., microarrays) are sufficient for many if not most biomedical research efforts. A large amount of data from diverse studies proves this perception inaccurate at best, and at worst, an impediment for further efforts to characterize the variation in the human genome. Because variation in genotype and environment are the fundamental basis to understand phenotypic variability and heritability at the population level, identifying the range of human genetic variation is crucial to the development of personalized nutrition and medicine. The Human Variome Project (HVP; http://www.humanvariomeproject.org/) was proposed initially to systematically collect mutations that cause human disease and create a cyber infrastructure to link locus specific databases (LSDB). We report here the discussions and recommendations from the 2008 HVP planning meeting held in San Feliu de Guixols, Spain, in May 2008.
    • Protumorigenic role of Timeless in hepatocellular carcinoma.

      Elgohary, Nahla; Pellegrino, Rossella; Neumann, Olaf; Elzawahry, Heba M; Saber, Magdy M; Zeeneldin, Ahmed A; Geffers, Robert; Ehemann, Volker; Schemmer, Peter; Schirmacher, Peter; et al. (2015-02)
      The mammalian timeless (TIM) protein interacts with proteins of the endogenous clock and essentially contributes to the circadian rhythm. In addition, TIM is involved in maintenance of chromosome integrity, growth control and development. Thus, we hypothesized that TIM may exert a potential protumorigenic function in human hepatocarcinogenesis. TIM was overexpressed in a subset of human HCCs both at the mRNA and the protein level. siRNA-mediated knockdown of TIM reduced cell viability due to the induction of apoptosis and G2 arrest. The latter was mediated via CHEK2 phosphorylation. In addition, siRNA-treated cells showed a significantly reduced migratory capacity and reduced expression levels of various proteins. Mechanistically, TIM directly interacts with the eukaryotic elongation factor 1A2 (EEF1A2), which binds to actin filaments to promote tumor cell migration. siRNA-mediated knockdown of TIM reduced EEF1A2 protein levels thereby affecting ribosomal protein biosynthesis. Thus, overexpression of TIM exerts oncogenic function in human HCCs, which is mediated via CHEK2 and EEF1A2.