• Deletion of Irf3 and Irf7 Genes in Mice Results in Altered Interferon Pathway Activation and Granulocyte-Dominated Inflammatory Responses to Influenza A Infection.

      Hatesuer, Bastian; Hoang, Hang Thi Thu; Riese, Peggy; Trittel, Stephanie; Gerhauser, Ingo; Elbahesh, Husni; Geffers, Robert; Wilk, Esther; Schughart, Klaus; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr.7, 38124 Braunschweig, Germany. (2017)
      The interferon (IFN) pathway plays an essential role in the innate immune response following viral infections and subsequent shaping of adaptive immunity. Infections with influenza A viruses (IAV) activate the IFN pathway after the recognition of pathogen-specific molecular patterns by respective pattern recognition receptors. The IFN regulatory factors IRF3 and IRF7 are key players in the regulation of type I and III IFN genes. In this study, we analyzed the role of IRF3 and IRF7 for the host response to IAV infections in Irf3-/-, Irf7-/-, and Irf3-/-Irf7-/- knockout mice. While the absence of IRF3 had only a moderate impact on IFN expression, deletion of IRF7 completely abolished IFNα production after infection. In contrast, lack of both IRF3 and IRF7 resulted in the absence of both IFNα and IFNβ after IAV infection. In addition, IAV infection of double knockout mice resulted in a strong increase of mortality associated with a massive influx of granulocytes in the lung and reduced activation of the adaptive immune response.
    • Immunoglobulins drive terminal maturation of splenic dendritic cells.

      Zietara, Natalia; Łyszkiewicz, Marcin; Puchałka, Jacek; Pei, Gang; Gutierrez, Maximiliano Gabriel; Lienenklaus, Stefan; Hobeika, Elias; Reth, Michael; Martins dos Santos, Vitor A P; Krueger, Andreas; et al. (2013-02-05)
      Nature and physiological status of antigen-presenting cells, such as dendritic cells DCs, are decisive for the immune reactions elicited. Multiple factors and cell interactions have been described that affect maturation of DCs. Here, we show that DCs arising in the absence of immunoglobulins (Ig) in vivo are impaired in cross-presentation of soluble antigen. This deficiency was due to aberrant cellular targeting of antigen to lysosomes and its rapid degradation. Function of DCs could be restored by transfer of Ig irrespective of antigen specificity and isotype. Modulation of cross-presentation by Ig was inhibited by coapplication of mannan and, thus, likely to be mediated by C-type lectin receptors. This unexpected dependency of splenic DCs on Ig to cross-present antigen provides insights into the interplay between cellular and humoral immunity and the immunomodulatory capacity of Ig.
    • NK cell activation in visceral leishmaniasis requires TLR9, myeloid DCs, and IL-12, but is independent of plasmacytoid DCs.

      Schleicher, Ulrike; Liese, Jan; Knippertz, Ilka; Kurzmann, Claudia; Hesse, Andrea; Heit, Antje; Fischer, Jens A A; Weiss, Siegfried; Kalinke, Ulrich; Kunz, Stefanie; et al. (2007-04-16)
      Natural killer (NK) cells are sentinel components of the innate response to pathogens, but the cell types, pathogen recognition receptors, and cytokines required for their activation in vivo are poorly defined. Here, we investigated the role of plasmacytoid dendritic cells (pDCs), myeloid DCs (mDCs), Toll-like receptors (TLRs), and of NK cell stimulatory cytokines for the induction of an NK cell response to the protozoan parasite Leishmania infantum. In vitro, pDCs did not endocytose Leishmania promastigotes but nevertheless released interferon (IFN)-alpha/beta and interleukin (IL)-12 in a TLR9-dependent manner. mDCs rapidly internalized Leishmania and, in the presence of TLR9, produced IL-12, but not IFN-alpha/beta. Depletion of pDCs did not impair the activation of NK cells in L. infantum-infected mice. In contrast, L. infantum-induced NK cell cytotoxicity and IFN-gamma production were abolished in mDC-depleted mice. The same phenotype was observed in TLR9(-/-) mice, which lacked IL-12 expression by mDCs, and in IL-12(-/-) mice, whereas IFN-alpha/beta receptor(-/-) mice showed only a minor reduction of NK cell IFN-gamma expression. This study provides the first direct evidence that mDCs are essential for eliciting NK cell cytotoxicity and IFN-gamma release in vivo and demonstrates that TLR9, mDCs, and IL-12 are functionally linked to the activation of NK cells in visceral leishmaniasis.
    • Synergistic and differential modulation of immune responses by Hsp60 and lipopolysaccharide.

      Osterloh, Anke; Kalinke, Ulrich; Weiss, Siegfried; Fleischer, Bernhard; Breloer, Minka; Department of Immunology, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany. osterloh@bni.uni-hamburg.de (2007-02-16)
      Activation of professional antigen-presenting cells (APC) is a crucial step in the initiation of an efficient immune response. In this study we show that Hsp60 mediates immune stimulation by different mechanisms, dependent and independent of lipopolysaccharide (LPS). We have demonstrated earlier that both, Hsp60 and LPS, increase antigen-specific interferon (IFN) gamma release in T cells. Here we show that in contrast to LPS Hsp60 induces IFNalpha production in professional APC. Neutralization of IFNalpha as well as the absence of functional IFNalphabeta receptor on APC and T cells interfered with Hsp60-mediated IFNgamma secretion in antigen-dependent T cell activation, strongly suggesting that IFNalpha represents one factor contributing to Hsp60-specific immune stimulation. On the other hand, we show that Hsp60 bound to the cell surface of APC colocalizes with the LPS co-receptor CD14 and LPS binding sites. Hsp60 specifically binds bacterial LPS and both molecules synergistically enhanced IL-12p40 production in APC and IFNgamma release in antigen-dependent T cell activation. This effect was Hsp60-specific and dependent on LPS-binding by Hsp60. Furthermore, we show that Hsp60 exclusively binds to macrophages and DC but not to T or B lymphocytes and that both, T cell stimulation by Hsp60 as well as Hsp60/LPS complexes, strictly depends on the presence of professional APC and is not mediated by B cells. Taken together, our data support an extension of the concept of Hsp60 as an endogenous danger signal: besides its function as a classical danger signal indicating unplanned tissue destruction to the innate immune system, in the incident of bacterial infection extracellular Hsp60 may bind LPS and facilitate microbe recognition by lowering the threshold of pathogen-associated molecular pattern (PAMP) detection and enhancing Toll-like receptor (TLR) signaling.
    • Type I IFNs induce anti-tumor polarization of tumor associated neutrophils in mice and human.

      Andzinski, Lisa; Kasnitz, Nadine; Stahnke, Stephanie; Wu, Ching-Fang; Gereke, Marcus; von Köckritz-Blickwede, Maren; Schilling, Bastian; Brandau, Sven; Weiss, Siegfried; Jablonska, Jadwiga; et al. (2016-04-15)
      The importance of tumor associated neutrophils (TANs) in cancer development is in the meantime well established. Numerous of clinical data document the adverse prognostic effects of neutrophil infiltration in solid tumors. However, certain tumor therapies need functional neutrophils to be effective, suggesting altered neutrophil polarization associated with different outcomes for cancer patients. Therefore, modulation of neutrophilic phenotypes represents a potent therapeutic option, but factors mediating neutrophil polarization are still poorly defined. In this manuscript we provide evidence that type I IFNs alter neutrophilic phenotype into anti-tumor, both in mice and human. In the absence of IFN-β, pro-tumor properties, such as reduced tumor cytotoxicity with low neutrophil extracellular traps (NETs) expression, low ICAM1 and TNF-α expression, dominated neutrophil phenotypes in primary lesion and premetastatic lung. Interestingly, such neutrophils have significantly prolonged life-span. Notably, interferon therapy in mice altered TAN polarization towards anti-tumor N1. Similar changes in neutrophil activation could be observed in melanoma patients undergoing type I IFN therapy. Altogether, these data highlight the therapeutic potential of interferons, suggesting optimization of its clinical use as potent anti-tumor agent.