• Type I IFNs induce anti-tumor polarization of tumor associated neutrophils in mice and human.

      Andzinski, Lisa; Kasnitz, Nadine; Stahnke, Stephanie; Wu, Ching-Fang; Gereke, Marcus; von Köckritz-Blickwede, Maren; Schilling, Bastian; Brandau, Sven; Weiss, Siegfried; Jablonska, Jadwiga; et al. (2016-04-15)
      The importance of tumor associated neutrophils (TANs) in cancer development is in the meantime well established. Numerous of clinical data document the adverse prognostic effects of neutrophil infiltration in solid tumors. However, certain tumor therapies need functional neutrophils to be effective, suggesting altered neutrophil polarization associated with different outcomes for cancer patients. Therefore, modulation of neutrophilic phenotypes represents a potent therapeutic option, but factors mediating neutrophil polarization are still poorly defined. In this manuscript we provide evidence that type I IFNs alter neutrophilic phenotype into anti-tumor, both in mice and human. In the absence of IFN-β, pro-tumor properties, such as reduced tumor cytotoxicity with low neutrophil extracellular traps (NETs) expression, low ICAM1 and TNF-α expression, dominated neutrophil phenotypes in primary lesion and premetastatic lung. Interestingly, such neutrophils have significantly prolonged life-span. Notably, interferon therapy in mice altered TAN polarization towards anti-tumor N1. Similar changes in neutrophil activation could be observed in melanoma patients undergoing type I IFN therapy. Altogether, these data highlight the therapeutic potential of interferons, suggesting optimization of its clinical use as potent anti-tumor agent.
    • Type I Interferons Interfere with the Capacity of mRNA Lipoplex Vaccines to Elicit Cytolytic T Cell Responses.

      De Beuckelaer, Ans; Pollard, Charlotte; Van Lint, Sandra; Roose, Kenny; Van Hoecke, Lien; Naessens, Thomas; Udhayakumar, Vimal Kumar; Smet, Muriel; Sanders, Niek; Lienenklaus, Stefan; et al. (2016-11)
      Given their high potential to evoke cytolytic T cell responses, tumor antigen-encoding messenger RNA (mRNA) vaccines are now being intensively explored as therapeutic cancer vaccines. mRNA vaccines clearly benefit from wrapping the mRNA into nano-sized carriers such as lipoplexes that protect the mRNA from degradation and increase its uptake by dendritic cells in vivo. Nevertheless, the early innate host factors that regulate the induction of cytolytic T cells to mRNA lipoplex vaccines have remained unresolved. Here, we demonstrate that mRNA lipoplexes induce a potent type I interferon (IFN) response upon subcutaneous, intradermal and intranodal injection. Regardless of the route of immunization applied, these type I IFNs interfered with the generation of potent cytolytic T cell responses. Most importantly, blocking type I IFN signaling at the site of immunization through the use of an IFNAR blocking antibody greatly enhanced the prophylactic and therapeutic antitumor efficacy of mRNA lipoplexes in the highly aggressive B16 melanoma model. As type I IFN induction appears to be inherent to the mRNA itself rather than to unique properties of the mRNA lipoplex formulation, preventing type I IFN induction and/or IFNAR signaling at the site of immunization might constitute a widely applicable strategy to improve the potency of mRNA vaccination.