• 3DTF: a web server for predicting transcription factor PWMs using 3D structure-based energy calculations.

      Gabdoulline, R; Eckweiler, D; Kel, A; Stegmaier, P; Heinrich-Heine University of Duesseldorf, Universitaetstr. 1, 40225 Duesseldorf, Helmholtz Center for Infection Research, Inhoffenstrasse 7, 38234 Braunschweig, GeneXplain GmbH, Am Exer 10 b, 38302 Wolfenbüttel, BIOBASE GmbH, Halchtersche Str. 33, 38304 Wolfenbüttel, Germany and Institute of Chemical Biology and Fundamental Medicine, Russian Academy of Science, 10 Lavrentyev Ave, 630090 Novosibirsk, Russia. (2012-06-11)
      We present the webserver 3D transcription factor (3DTF) to compute position-specific weight matrices (PWMs) of transcription factors using a knowledge-based statistical potential derived from crystallographic data on protein-DNA complexes. Analysis of available structures that can be used to construct PWMs shows that there are hundreds of 3D structures from which PWMs could be derived, as well as thousands of proteins homologous to these. Therefore, we created 3DTF, which delivers binding matrices given the experimental or modeled protein-DNA complex. The webserver can be used by biologists to derive novel PWMs for transcription factors lacking known binding sites and is freely accessible at http://www.gene-regulation.com/pub/programs/3dtf/.
    • The Anaerobically Induced sRNA PaiI Affects Denitrification in Pseudomonas aeruginosa PA14.

      Tata, Muralidhar; Amman, Fabian; Pawar, Vinay; Wolfinger, Michael T; Weiss, Siegfried; Häussler, Susanne; Bläsi, Udo; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2017)
      Pseudomonas aeruginosa is an opportunistic pathogen that can thrive by anaerobic respiration in the lungs of cystic fibrosis patients using nitrate as terminal electron acceptor. Here, we report the identification and characterization of the small RNA PaiI in the P. aeruginosa strain 14 (PA14). PaiI is anaerobically induced in the presence of nitrate and depends on the two-component system NarXL. Our studies revealed that PaiI is required for efficient denitrification affecting the conversion of nitrite to nitric oxide. In the absence of PaiI anaerobic growth was impaired on glucose, which can be reconciled with a decreased uptake of the carbon source under these conditions. The importance of PaiI for anaerobic growth is further underlined by the observation that a paiI deletion mutant was impaired in growth in murine tumors.
    • Application of Synthetic Peptide Arrays To Uncover Cyclic Di-GMP Binding Motifs

      Düvel, Juliane; Bense, Sarina; Möller, Stefan; Bertinetti, Daniela; Schwede, Frank; Morr, Michael; Eckweiler, Denitsa; Genieser, Hans-Gottfried; Jänsch, Lothar; Herberg, Friedrich W.; et al. (2016-01-01)
      ABSTRACT High levels of the universal bacterial second messenger cyclic di-GMP (c-di-GMP) promote the establishment of surface-attached growth in many bacteria. Not only can c-di-GMP bind to nucleic acids and directly control gene expression, but it also binds to a diverse array of proteins of specialized functions and orchestrates their activity. Since its development in the early 1990s, the synthetic peptide array technique has become a powerful tool for high-throughput approaches and was successfully applied to investigate the binding specificity of protein-ligand interactions. In this study, we used peptide arrays to uncover the c-di-GMP binding site of a Pseudomonas aeruginosa protein (PA3740) that was isolated in a chemical proteomics approach. PA3740 was shown to bind c-di-GMP with a high affinity, and peptide arrays uncovered LKKALKKQTNLR to be a putative c-di-GMP binding motif. Most interestingly, different from the previously identified c-di-GMP binding motif of the PilZ domain (RXXXR) or the I site of diguanylate cyclases (RXXD), two leucine residues and a glutamine residue and not the charged amino acids provided the key residues of the binding sequence. Those three amino acids are highly conserved across PA3740 homologs, and their singular exchange to alanine reduced c-di-GMP binding within the full-length protein. IMPORTANCE In many bacterial pathogens the universal bacterial second messenger c-di-GMP governs the switch from the planktonic, motile mode of growth to the sessile, biofilm mode of growth. Bacteria adapt their intracellular c-di-GMP levels to a variety of environmental challenges. Several classes of c-di-GMP binding proteins have been structurally characterized, and diverse c-di-GMP binding domains have been identified. Nevertheless, for several c-di-GMP receptors, the binding motif remains to be determined. Here we show that the use of a synthetic peptide array allowed the identification of a c-di-GMP binding motif of a putative c-di-GMP receptor protein in the opportunistic pathogen P. aeruginosa . The application of synthetic peptide arrays will facilitate the search for additional c-di-GMP receptor proteins and aid in the characterization of c-di-GMP binding motifs.
    • BACTOME-a reference database to explore the sequence- and gene expression-variation landscape of Pseudomonas aeruginosa clinical isolates.

      Hornischer, Klaus; Khaledi, Ariane; Pohl, Sarah; Schniederjans, Monika; Pezoldt, Lorena; Casilag, Fiordiligie; Muthukumarasamy, Uthayakumar; Bruchmann, Sebastian; Thöming, Janne; Kordes, Adrian; et al. (2018-10-01)
      Extensive use of next-generation sequencing (NGS) for pathogen profiling has the potential to transform our understanding of how genomic plasticity contributes to phenotypic versatility. However, the storage of large amounts of NGS data and visualization tools need to evolve to offer the scientific community fast and convenient access to these data. We introduce BACTOME as a database system that links aligned DNA- and RNA-sequencing reads of clinical Pseudomonas aeruginosa isolates with clinically relevant pathogen phenotypes. The database allows data extraction for any single isolate, gene or phenotype as well as data filtering and phenotypic grouping for specific research questions. With the integration of statistical tools we illustrate the usefulness of a relational database structure for the identification of phenotype-genotype correlations as an essential part of the discovery pipeline in genomic research. Furthermore, the database provides a compilation of DNA sequences and gene expression values of a plethora of clinical isolates to give a consensus DNA sequence and consensus gene expression signature. Deviations from the consensus thereby describe the genomic landscape and the transcriptional plasticity of the species P. aeruginosa. The database is available at https://bactome.helmholtz-hzi.de.
    • Biofilms 2012: new discoveries and significant wrinkles in a dynamic field.

      Haussler, Susanne; Fuqua, Clay; Twincore, Center for Clinical and Experimental Infection Research, a joint venture of the Helmholtz Center of Infection Research, Braunschweig, and the Hannover Medical School, Hannover, Germany. (2013-07)
      The ASM 6th Conference on Biofilms was held in Miami, Florida, 29 September to 4 October, 2012. The conference provided an opportunity for the exchange of new findings and ideas with regard to biofilm research. A wide range of findings, spanning applied biology, evolution, ecology, physiology, and molecular biology, were presented at the conference. This review summarizes the presentations with regard to emerging biofilm-related themes.
    • Breaking the vicious cycle of antibiotic killing and regrowth of biofilm-residing .

      Müsken, Mathias; Pawar, Vinay; Schwebs, Timo; Bähre, Heike; Felgner, Sebastian; Weiss, Siegfried; Häussler, Susanne; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (2018-10-08)
      Biofilm-residing bacteria embedded in an extracellular matrix are protected from diverse physico-chemical insults. In addition to the general recalcitrance of biofilm-bacteria, high bacterial loads in biofilm-associated infections significantly diminishes the efficacy of antimicrobials due to a low per-cell antibiotic concentration. Accordingly, present antimicrobial treatment protocols, that have been established to serve the eradication of acute infections, fail to clear biofilm-associated chronic infections. In the present study, we applied automated confocal microscopy on Pseudomonas aeruginosa to monitor dynamic killing of biofilm-grown bacteria by tobramycin and colistin in real-time. We revealed that the time required for surviving bacteria to repopulate the biofilm could be taken as measure for effectiveness of the antimicrobial treatment. It depends on the: i) nature and concentration of the antibiotic, ii) duration of antibiotic treatment; iii) application as mono or combination therapy and iv) time intervals of drug administration. The vicious cycle of killing and repopulation of biofilm bacteria could also be broken in an in vivo model system by applying successive antibiotic dosages with time intervals that do not allow full reconstitution of the biofilm communities. Treatment regimens that consider the important aspects of antimicrobial killing kinetics bear the potential to improve control of biofilm regrowth. This is an important and underestimated factor that is bound to ensure sustainable treatment success of chronic infections.
    • A chemical proteomics approach to identify c-di-GMP binding proteins in Pseudomonas aeruginosa.

      Düvel, Juliane; Bertinetti, Daniela; Möller, Stefan; Schwede, Frank; Morr, Michael; Wissing, Josef; Radamm, Lena; Zimmermann, Bastian; Genieser, Hans-Gottfried; Jänsch, Lothar; et al. (2012-02)
      In many bacteria, high levels of the ubiquitous second messenger c-di-GMP have been demonstrated to suppress motility and to promote the establishment of surface-adherent biofilm communities. While molecular mechanisms underlying the synthesis and degradation of c-di-GMP have been comprehensively characterized, little is known about how c-di-GMP mediates its regulatory effects. In this study, we have established a chemical proteomics approach to identify c-di-GMP interacting proteins in the opportunistic pathogen Pseudomonas aeruginosa. A functionalized c-di-GMP analog, 2'-aminohexylcarbamoyl-c-di-GMP (2'-AHC-c-di-GMP), was chemically synthesized and following its immobilization used to perform affinity pull down experiments. Enriched proteins were subsequently identified by high-resolution mass spectrometry. 2'-AHC-c-di-GMP was also employed in surface plasmon resonance studies to evaluate and quantify the interaction of c-di-GMP with its potential target molecules in vitro. The biochemical tools presented here may serve the identification of novel classes of c-di-GMP effectors and thus contribute to a better characterization and understanding of the complex c-di-GMP signaling network.
    • Clustered core- and pan-genome content on Rhodobacteraceae chromosomes.

      Kopejtka, Karel; Lin, Yan; Jakubovičová, Markéta; Koblížek, Michal; Tomasch, Jürgen; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Oxford University Press, 2019-07-03)
      In Bacteria, chromosome replication starts at a single origin of replication and proceeds on both replichores. Due to its asymmetric nature, replication influences chromosome structure and gene organization, mutation rate and expression. To date, little is known about the distribution of highly conserved genes over the bacterial chromosome. Here, we used a set of 101 fully-sequenced Rhodobacteraceae representatives to analyze the relationship between conservation of genes within this family and their distance from the origin of replication. Twenty-two of the analyzed species had core genes clustered significantly closer to the origin of replication with representatives of the genus Celeribacter being the most apparent example. Interestingly, there were also eight species with the opposite organization. In particular Rhodobaca barguzinensis and Loktanella vestfoldensis showed a significant increase of core genes with distance from the origin of replication. The uneven distribution of low-conserved regions is in particular pronounced for genomes in which the halves of one replichore differ in their conserved gene content. Phage integration and horizontal gene transfer partially explain the scattered nature of Rhodobacteraceae genomes. Our findings lay the foundation for a better understanding of bacterial genome evolution and the role of replication therein.
    • Complete Genome Sequence of Highly Adherent Pseudomonas aeruginosa Small-Colony Variant SCV20265.

      Eckweiler, Denitsa; Bunk, Boyke; Spröer, Cathrin; Overmann, Jörg; Häussler, Susanne; Department of Molecular Bacteriology, Helmholtz Centre for Infection Research, Braunschweig, Germany (2014)
      The evolution of small-colony variants within Pseudomonas aeruginosa populations chronically infecting the cystic fibrosis lung is one example of the emergence of adapted subpopulations. Here, we present the complete genome sequence of the autoaggregative and hyperpiliated P. aeruginosa small-colony variant SCV20265, which was isolated from a cystic fibrosis (CF) patient.
    • Comprehensive MALDI-TOF Biotyping of the Non-Redundant Harvard Pseudomonas aeruginosa PA14 Transposon Insertion Mutant Library.

      Oumeraci, Tonio; Jensen, Vanessa; Talbot, Steven R; Hofmann, Winfried; Kostrzewa, Markus; Schlegelberger, Brigitte; von Neuhoff, Nils; Häussler, Susanne (2015)
      Pseudomonas aeruginosa is a gram-negative bacterium that is ubiquitously present in the aerobic biosphere. As an antibiotic-resistant facultative pathogen, it is a major cause of hospital-acquired infections. Its rapid and accurate identification is crucial in clinical and therapeutic environments.
    • Constitutive production of c-di-GMP is associated with mutations in a variant of Pseudomonas aeruginosa with altered membrane composition.

      Blanka, Andrea; Düvel, Juliane; Dötsch, Andreas; Klinkert, Birgit; Abraham, Wolf-Rainer; Kaever, Volkhard; Ritter, Christiane; Narberhaus, Franz; Häussler, Susanne; Institute for Molecular Bacteriology, TWINCORE,30625 Hannover, Germany. (2015)
      Most bacteria can form multicellular communities called biofilms on biotic and abiotic surfaces. This multicellular response to surface contact correlates with an increased resistance to various adverse environmental conditions, including those encountered during infections of the human host and exposure to antimicrobial compounds. Biofilm formation occurs when freely swimming (planktonic) cells encounter a surface, which stimulates the chemosensory-like, surface-sensing system Wsp and leads to generation of the intracellular second messenger 3',5'-cyclic-di-guanosine monophosphate (c-di-GMP). We identified adaptive mutations in a clinical small colony variant (SCV) of Pseudomonas aeruginosa and correlated their presence with self-aggregating growth behavior and an enhanced capacity to form biofilms. We present evidence that a point mutation in the 5' untranslated region of the accBC gene cluster, which encodes components of an enzyme responsible for fatty acid biosynthesis, was responsible for a stabilized mRNA structure that resulted in reduced translational efficiency and an increase in the proportion of short-chain fatty acids in the plasma membrane. We propose a model in which these changes in P. aeruginosa serve as a signal for the Wsp system to constitutively produce increased amounts of c-di-GMP and thus play a role in the regulation of adhesion-stimulated bacterial responses.
    • Contribution of Veillonella parvula to Pseudomonas aeruginosa-mediated pathogenicity in a murine tumor model system.

      Pustelny, Christian; Komor, Uliana; Pawar, Vinay; Lorenz, Anne; Bielecka, Agata; Moter, Annette; Gocht, Benjamin; Eckweiler, Denitsa; Müsken, Mathias; Grothe, Claudia; et al. (2015-01)
      The recent finding that high numbers of strict anaerobes are present in the respiratory tract of cystic fibrosis (CF) patients has drawn attention to the pathogenic contribution of the CF microbiome to airway disease. In this study, we investigated the specific interactions of the most dominant bacterial CF pathogen, Pseudomonas aeruginosa, with the anaerobic bacterium Veillonella parvula, which has been recovered at comparable cell numbers from the respiratory tract of CF patients. In addition to growth competition experiments, transcriptional profiling, and analyses of biofilm formation by in vitro studies, we used our recently established in vivo murine tumor model to investigate mutual influences of the two pathogens during a biofilm-associated infection process. We found that P. aeruginosa and V. parvula colonized distinct niches within the tumor. Interestingly, significantly higher cell numbers of P. aeruginosa could be recovered from the tumor tissue when mice were coinfected with both bacterial species than when mice were monoinfected with P. aeruginosa. Concordantly, the results of in vivo transcriptional profiling implied that the presence of V. parvula supports P. aeruginosa growth at the site of infection in the host, and the higher P. aeruginosa load correlated with clinical deterioration of the host. Although many challenges must be overcome to dissect the specific interactions of coinfecting bacteria during an infection process, our findings exemplarily demonstrate that the complex interrelations between coinfecting microorganisms and the immune responses determine clinical outcome to a much greater extent than previously anticipated.
    • The Core Proteome of Biofilm-Grown Clinical Isolates.

      Erdmann, Jelena; Thöming, Janne G; Pohl, Sarah; Pich, Andreas; Lenz, Christof; Häussler, Susanne; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (MPDI, 2019-09-23)
      Comparative genomics has greatly facilitated the identification of shared as well as unique features among individual cells or tissues, and thus offers the potential to find disease markers. While proteomics is recognized for its potential to generate quantitative maps of protein expression, comparative proteomics in bacteria has been largely restricted to the comparison of single cell lines or mutant strains. In this study, we used a data independent acquisition (DIA) technique, which enables global protein quantification of large sample cohorts, to record the proteome profiles of overall 27 whole genome sequenced and transcriptionally profiled clinical isolates of the opportunistic pathogen Pseudomonas aeruginosa. Analysis of the proteome profiles across the 27 clinical isolates grown under planktonic and biofilm growth conditions led to the identification of a core biofilm-associated protein profile. Furthermore, we found that protein-to-mRNA ratios between different P. aeruginosa strains are well correlated, indicating conserved patterns of post-transcriptional regulation. Uncovering core regulatory pathways, which drive biofilm formation and associated antibiotic tolerance in bacterial pathogens, promise to give clues to interactions between bacterial species and their environment and could provide useful targets for new clinical interventions to combat biofilm-associated infections.
    • Cross talk between the response regulators PhoB and TctD allows for the integration of diverse environmental signals in Pseudomonas aeruginosa.

      Bielecki, Piotr; Jensen, Vanessa; Schulze, Wiebke; Gödeke, Julia; Strehmel, Janine; Eckweiler, Denitsa; Nicolai, Tanja; Bielecka, Agata; Wille, Thorsten; Gerlach, Roman G; et al. (2015-07-27)
      Two-component systems (TCS) serve as stimulus-response coupling mechanisms to allow organisms to adapt to a variety of environmental conditions. The opportunistic pathogen Pseudomonas aeruginosa encodes for more than 100 TCS components. To avoid unwanted cross-talk, signaling cascades are very specific, with one sensor talking to its cognate response regulator (RR). However, cross-regulation may provide means to integrate different environmental stimuli into a harmonized output response. By applying a split luciferase complementation assay, we identified a functional interaction of two RRs of the OmpR/PhoB subfamily, namely PhoB and TctD in P. aeruginosa. Transcriptional profiling, ChIP-seq analysis and a global motif scan uncovered the regulons of the two RRs as well as a quadripartite binding motif in six promoter regions. Phosphate limitation resulted in PhoB-dependent expression of the downstream genes, whereas the presence of TctD counteracted this activation. Thus, the integration of two important environmental signals e.g. phosphate availability and the carbon source are achieved by a titration of the relative amounts of two phosphorylated RRs that inversely regulate a common subset of genes. In conclusion, our results on the PhoB and TctD mediated two-component signal transduction pathways exemplify how P. aeruginosa may exploit cross-regulation to adapt bacterial behavior to complex environments.
    • Cross-regulation by CrcZ RNA controls anoxic biofilm formation in Pseudomonas aeruginosa.

      Pusic, Petra; Tata, Muralidhar; Wolfinger, Michael T; Sonnleitner, Elisabeth; Häussler, Susanne; Bläsi, Udo; Helmholtz Centre for infection research, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2016-12-21)
      Pseudomonas aeruginosa (PA) can thrive in anaerobic biofilms in the lungs of cystic fibrosis (CF) patients. Here, we show that CrcZ is the most abundant PA14 RNA bound to the global regulator Hfq in anoxic biofilms grown in cystic fibrosis sputum medium. Hfq was crucial for anoxic biofilm formation. This observation complied with an RNAseq based transcriptome analysis and follow up studies that implicated Hfq in regulation of a central step preceding denitrification. CrcZ is known to act as a decoy that sequesters Hfq during relief of carbon catabolite repression, which in turn alleviates Hfq-mediated translational repression of catabolic genes. We therefore inferred that CrcZ indirectly impacts on biofilm formation by competing for Hfq. This hypothesis was supported by the findings that over-production of CrcZ mirrored the biofilm phenotype of the hfq deletion mutant, and that deletion of the crcZ gene augmented biofilm formation. To our knowledge, this is the first example where competition for Hfq by CrcZ cross-regulates an Hfq-dependent physiological process unrelated to carbon metabolism.
    • Deep transcriptome profiling of clinical Klebsiella pneumoniae isolates reveals strain and sequence type-specific adaptation.

      Bruchmann, Sebastian; Muthukumarasamy, Uthayakumar; Pohl, Sarah; Preusse, Matthias; Bielecka, Agata; Nicolai, Tanja; Hamann, Isabell; Hillert, Roger; Kola, Axel; Gastmeier, Petra; et al. (2015-11)
      Health-care-associated infections by multi-drug-resistant bacteria constitute one of the greatest challenges to modern medicine. Bacterial pathogens devise various mechanisms to withstand the activity of a wide range of antimicrobial compounds, among which the acquisition of carbapenemases is one of the most concerning. In Klebsiella pneumoniae, the dissemination of the K. pneumoniae carbapenemase is tightly connected to the global spread of certain clonal lineages. Although antibiotic resistance is a key driver for the global distribution of epidemic high-risk clones, there seem to be other adaptive traits that may explain their success. Here, we exploited the power of deep transcriptome profiling (RNA-seq) to shed light on the transcriptomic landscape of 37 clinical K. pneumoniae isolates of diverse phylogenetic origins. We identified a large set of 3346 genes which was expressed in all isolates. While the core-transcriptome profiles varied substantially between groups of different sequence types, they were more homogenous among isolates of the same sequence type. We furthermore linked the detailed information on differentially expressed genes with the clinically relevant phenotypes of biofilm formation and bacterial virulence. This allowed for the identification of a diminished expression of biofilm-specific genes within the low biofilm producing ST258 isolates as a sequence type-specific trait.
    • Determining lineage-specific bacterial growth curves with a novel approach based on amplicon reads normalization using internal standard (ARNIS).

      Piwosz, Kasia; Shabarova, Tanja; Tomasch, Jürgen; Šimek, Karel; Kopejtka, Karel; Kahl, Silke; Pieper, Dietmar H; Koblížek, Michal; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (2018-11-01)
      The growth rate is a fundamental characteristic of bacterial species, determining its contributions to the microbial community and carbon flow. High-throughput sequencing can reveal bacterial diversity, but its quantitative inaccuracy precludes estimation of abundances and growth rates from the read numbers. Here, we overcame this limitation by normalizing Illumina-derived amplicon reads using an internal standard: a constant amount of Escherichia coli cells added to samples just before biomass collection. This approach made it possible to reconstruct growth curves for 319 individual OTUs during the grazer-removal experiment conducted in a freshwater reservoir Římov. The high resolution data signalize significant functional heterogeneity inside the commonly investigated bacterial groups. For instance, many Actinobacterial phylotypes, a group considered to harbor slow-growing defense specialists, grew rapidly upon grazers' removal, demonstrating their considerable importance in carbon flow through food webs, while most Verrucomicrobial phylotypes were particle associated. Such differences indicate distinct life strategies and roles in food webs of specific bacterial phylotypes and groups. The impact of grazers on the specific growth rate distributions supports the hypothesis that bacterivory reduces competition and allows existence of diverse bacterial communities. It suggests that the community changes were driven mainly by abundant, fast, or moderately growing, and not by rare fast growing, phylotypes. We believe amplicon read normalization using internal standard (ARNIS) can shed new light on in situ growth dynamics of both abundant and rare bacteria.
    • Detrimental Effect of Type I IFNs During Acute Lung Infection With Is Mediated Through the Stimulation of Neutrophil NETosis.

      Pylaeva, Ekaterina; Bordbari, Sharareh; Spyra, Ilona; Decker, Anna Sophie; Häussler, Susanne; Vybornov, Vadim; Lang, Stephan; Jablonska, Jadwiga; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Frontiers, 2019-01-01)
      Pseudomonas aeruginosa is an opportunistic multidrug-resistant pathogen, able to grow in biofilms. It causes life-threatening complications in diseases characterized by the up-regulation of type I interferon (IFN) signaling, such as cancer or viral infections. Since type I IFNs regulate multiple functions of neutrophils, which constitute the first line of anti-bacterial host defense, in this work we aimed to study how interferon-activated neutrophils influence the course of P. aeruginosa infection of the lung. In lungs of infected IFN-sufficient WT mice, significantly elevated bacteria load was observed, accompanied by the prominent lung tissue damage. At the same time IFN-deficient animals seem to be partly resistant to the infection. Lung neutrophils from such IFN-deficient animals release significantly lower amounts of neutrophil extracellular traps (NETs) and reactive oxygen species (ROS), as compared to WT neutrophils. Of note, such IFN-deficient neutrophils show significantly decreased capacity to stimulate biofilm formation by P. aeruginosa. Reduced biofilm production impairs in turn the survival of bacteria in a lung tissue. In line with that, treatment of neutrophils with recombinant IFN-β enhances their NETosis and stimulates biofilm formation by Pseudomonas after co-incubation with such neutrophils. Possibly, bacteria utilizes neutrophil-derived NETs as a scaffold for released biofilms. In agreement with this, in vivo treatment with ROS-scavengers, NETs disruption or usage of the bacterial strains unable to bind DNA, suppress neutrophil-mediated biofilm formation in the lungs. Together, our findings indicate that the excessive activation of neutrophils by type I IFNs leads to their boosted NETosis that in turn triggers biofilm formation by P. aeruginosa and supports its persistence in the infected lung. Targeting these mechanisms could offer a new therapeutic approach to prevent persistent bacterial infections in patients with diseases associated with the up-regulation of type I IFNs.
    • Effects of green tea compound epigallocatechin-3-gallate against Stenotrophomonas maltophilia infection and biofilm.

      Vidigal, Pedrina G; Müsken, Mathias; Becker, Katrin A; Häussler, Susanne; Wingender, Jost; Steinmann, Eike; Kehrmann, Jan; Gulbins, Erich; Buer, Jan; Rath, Peter Michael; et al. (2014)
      We investigated the in vitro and in vivo activities of epigallocatechin-3-gallate (EGCg), a green tea component, against Stenotrophomonas maltophilia (Sm) isolates from cystic fibrosis (CF) patients. In vitro effects of EGCg and the antibiotic colistin (COL) on growth inhibition, survival, and also against young and mature biofilms of S. maltophilia were determined. Qualitative and quantitative changes on the biofilms were assessed by confocal laser scanning microscopy (CLSM). Further, in vivo effects of nebulized EGCg in C57BL/6 and Cftr mutant mice during acute Sm lung infection were evaluated. Subinhibitory concentrations of EGCg significantly reduced not only biofilm formation, but also the quantity of viable cells in young and mature biofilms. CLSM showed that EGCg-exposed biofilms exhibited either a change in total biofilm biovolume or an increase of the fraction of dead cells contained within the biofilm in a dose depended manner. Sm infected wild-type and Cftr mutant mice treated with 1,024 mg/L EGCg by inhalation exhibited significantly lower bacterial counts than those undergoing no treatment or treated with COL. EGCg displayed promising inhibitory and anti-biofilm properties against CF Sm isolates in vitro and significantly reduced Sm bacterial counts in an acute infection model with wild type and CF mice. This natural compound may represent a novel therapeutic agent against Sm infection in CF.
    • Elucidation of Sigma Factor-Associated Networks in Pseudomonas aeruginosa Reveals a Modular Architecture with Limited and Function-Specific Crosstalk.

      Schulz, Sebastian; Eckweiler, Denitsa; Bielecka, Agata; Nicolai, Tanja; Franke, Raimo; Dötsch, Andreas; Hornischer, Klaus; Bruchmann, Sebastian; Düvel, Juliane; Häussler, Susanne; et al. (2015-03)
      Sigma factors are essential global regulators of transcription initiation in bacteria which confer promoter recognition specificity to the RNA polymerase core enzyme. They provide effective mechanisms for simultaneously regulating expression of large numbers of genes in response to challenging conditions, and their presence has been linked to bacterial virulence and pathogenicity. In this study, we constructed nine his-tagged sigma factor expressing and/or deletion mutant strains in the opportunistic pathogen Pseudomonas aeruginosa. To uncover the direct and indirect sigma factor regulons, we performed mRNA profiling, as well as chromatin immunoprecipitation coupled to high-throughput sequencing. We furthermore elucidated the de novo binding motif of each sigma factor, and validated the RNA- and ChIP-seq results by global motif searches in the proximity of transcriptional start sites (TSS). Our integrated approach revealed a highly modular network architecture which is composed of insulated functional sigma factor modules. Analysis of the interconnectivity of the various sigma factor networks uncovered a limited, but highly function-specific, crosstalk which orchestrates complex cellular processes. Our data indicate that the modular structure of sigma factor networks enables P. aeruginosa to function adequately in its environment and at the same time is exploited to build up higher-level functions by specific interconnections that are dominated by a participation of RpoN.