• Deep transcriptome profiling of clinical Klebsiella pneumoniae isolates reveals strain and sequence type-specific adaptation.

      Bruchmann, Sebastian; Muthukumarasamy, Uthayakumar; Pohl, Sarah; Preusse, Matthias; Bielecka, Agata; Nicolai, Tanja; Hamann, Isabell; Hillert, Roger; Kola, Axel; Gastmeier, Petra; et al. (2015-11)
      Health-care-associated infections by multi-drug-resistant bacteria constitute one of the greatest challenges to modern medicine. Bacterial pathogens devise various mechanisms to withstand the activity of a wide range of antimicrobial compounds, among which the acquisition of carbapenemases is one of the most concerning. In Klebsiella pneumoniae, the dissemination of the K. pneumoniae carbapenemase is tightly connected to the global spread of certain clonal lineages. Although antibiotic resistance is a key driver for the global distribution of epidemic high-risk clones, there seem to be other adaptive traits that may explain their success. Here, we exploited the power of deep transcriptome profiling (RNA-seq) to shed light on the transcriptomic landscape of 37 clinical K. pneumoniae isolates of diverse phylogenetic origins. We identified a large set of 3346 genes which was expressed in all isolates. While the core-transcriptome profiles varied substantially between groups of different sequence types, they were more homogenous among isolates of the same sequence type. We furthermore linked the detailed information on differentially expressed genes with the clinically relevant phenotypes of biofilm formation and bacterial virulence. This allowed for the identification of a diminished expression of biofilm-specific genes within the low biofilm producing ST258 isolates as a sequence type-specific trait.
    • Determining lineage-specific bacterial growth curves with a novel approach based on amplicon reads normalization using internal standard (ARNIS).

      Piwosz, Kasia; Shabarova, Tanja; Tomasch, Jürgen; Šimek, Karel; Kopejtka, Karel; Kahl, Silke; Pieper, Dietmar H; Koblížek, Michal; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (2018-11-01)
      The growth rate is a fundamental characteristic of bacterial species, determining its contributions to the microbial community and carbon flow. High-throughput sequencing can reveal bacterial diversity, but its quantitative inaccuracy precludes estimation of abundances and growth rates from the read numbers. Here, we overcame this limitation by normalizing Illumina-derived amplicon reads using an internal standard: a constant amount of Escherichia coli cells added to samples just before biomass collection. This approach made it possible to reconstruct growth curves for 319 individual OTUs during the grazer-removal experiment conducted in a freshwater reservoir Římov. The high resolution data signalize significant functional heterogeneity inside the commonly investigated bacterial groups. For instance, many Actinobacterial phylotypes, a group considered to harbor slow-growing defense specialists, grew rapidly upon grazers' removal, demonstrating their considerable importance in carbon flow through food webs, while most Verrucomicrobial phylotypes were particle associated. Such differences indicate distinct life strategies and roles in food webs of specific bacterial phylotypes and groups. The impact of grazers on the specific growth rate distributions supports the hypothesis that bacterivory reduces competition and allows existence of diverse bacterial communities. It suggests that the community changes were driven mainly by abundant, fast, or moderately growing, and not by rare fast growing, phylotypes. We believe amplicon read normalization using internal standard (ARNIS) can shed new light on in situ growth dynamics of both abundant and rare bacteria.
    • Detrimental Effect of Type I IFNs During Acute Lung Infection With Is Mediated Through the Stimulation of Neutrophil NETosis.

      Pylaeva, Ekaterina; Bordbari, Sharareh; Spyra, Ilona; Decker, Anna Sophie; Häussler, Susanne; Vybornov, Vadim; Lang, Stephan; Jablonska, Jadwiga; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Frontiers, 2019-01-01)
      Pseudomonas aeruginosa is an opportunistic multidrug-resistant pathogen, able to grow in biofilms. It causes life-threatening complications in diseases characterized by the up-regulation of type I interferon (IFN) signaling, such as cancer or viral infections. Since type I IFNs regulate multiple functions of neutrophils, which constitute the first line of anti-bacterial host defense, in this work we aimed to study how interferon-activated neutrophils influence the course of P. aeruginosa infection of the lung. In lungs of infected IFN-sufficient WT mice, significantly elevated bacteria load was observed, accompanied by the prominent lung tissue damage. At the same time IFN-deficient animals seem to be partly resistant to the infection. Lung neutrophils from such IFN-deficient animals release significantly lower amounts of neutrophil extracellular traps (NETs) and reactive oxygen species (ROS), as compared to WT neutrophils. Of note, such IFN-deficient neutrophils show significantly decreased capacity to stimulate biofilm formation by P. aeruginosa. Reduced biofilm production impairs in turn the survival of bacteria in a lung tissue. In line with that, treatment of neutrophils with recombinant IFN-β enhances their NETosis and stimulates biofilm formation by Pseudomonas after co-incubation with such neutrophils. Possibly, bacteria utilizes neutrophil-derived NETs as a scaffold for released biofilms. In agreement with this, in vivo treatment with ROS-scavengers, NETs disruption or usage of the bacterial strains unable to bind DNA, suppress neutrophil-mediated biofilm formation in the lungs. Together, our findings indicate that the excessive activation of neutrophils by type I IFNs leads to their boosted NETosis that in turn triggers biofilm formation by P. aeruginosa and supports its persistence in the infected lung. Targeting these mechanisms could offer a new therapeutic approach to prevent persistent bacterial infections in patients with diseases associated with the up-regulation of type I IFNs.
    • Effects of green tea compound epigallocatechin-3-gallate against Stenotrophomonas maltophilia infection and biofilm.

      Vidigal, Pedrina G; Müsken, Mathias; Becker, Katrin A; Häussler, Susanne; Wingender, Jost; Steinmann, Eike; Kehrmann, Jan; Gulbins, Erich; Buer, Jan; Rath, Peter Michael; et al. (2014)
      We investigated the in vitro and in vivo activities of epigallocatechin-3-gallate (EGCg), a green tea component, against Stenotrophomonas maltophilia (Sm) isolates from cystic fibrosis (CF) patients. In vitro effects of EGCg and the antibiotic colistin (COL) on growth inhibition, survival, and also against young and mature biofilms of S. maltophilia were determined. Qualitative and quantitative changes on the biofilms were assessed by confocal laser scanning microscopy (CLSM). Further, in vivo effects of nebulized EGCg in C57BL/6 and Cftr mutant mice during acute Sm lung infection were evaluated. Subinhibitory concentrations of EGCg significantly reduced not only biofilm formation, but also the quantity of viable cells in young and mature biofilms. CLSM showed that EGCg-exposed biofilms exhibited either a change in total biofilm biovolume or an increase of the fraction of dead cells contained within the biofilm in a dose depended manner. Sm infected wild-type and Cftr mutant mice treated with 1,024 mg/L EGCg by inhalation exhibited significantly lower bacterial counts than those undergoing no treatment or treated with COL. EGCg displayed promising inhibitory and anti-biofilm properties against CF Sm isolates in vitro and significantly reduced Sm bacterial counts in an acute infection model with wild type and CF mice. This natural compound may represent a novel therapeutic agent against Sm infection in CF.
    • Elucidation of Sigma Factor-Associated Networks in Pseudomonas aeruginosa Reveals a Modular Architecture with Limited and Function-Specific Crosstalk.

      Schulz, Sebastian; Eckweiler, Denitsa; Bielecka, Agata; Nicolai, Tanja; Franke, Raimo; Dötsch, Andreas; Hornischer, Klaus; Bruchmann, Sebastian; Düvel, Juliane; Häussler, Susanne; et al. (2015-03)
      Sigma factors are essential global regulators of transcription initiation in bacteria which confer promoter recognition specificity to the RNA polymerase core enzyme. They provide effective mechanisms for simultaneously regulating expression of large numbers of genes in response to challenging conditions, and their presence has been linked to bacterial virulence and pathogenicity. In this study, we constructed nine his-tagged sigma factor expressing and/or deletion mutant strains in the opportunistic pathogen Pseudomonas aeruginosa. To uncover the direct and indirect sigma factor regulons, we performed mRNA profiling, as well as chromatin immunoprecipitation coupled to high-throughput sequencing. We furthermore elucidated the de novo binding motif of each sigma factor, and validated the RNA- and ChIP-seq results by global motif searches in the proximity of transcriptional start sites (TSS). Our integrated approach revealed a highly modular network architecture which is composed of insulated functional sigma factor modules. Analysis of the interconnectivity of the various sigma factor networks uncovered a limited, but highly function-specific, crosstalk which orchestrates complex cellular processes. Our data indicate that the modular structure of sigma factor networks enables P. aeruginosa to function adequately in its environment and at the same time is exploited to build up higher-level functions by specific interconnections that are dominated by a participation of RpoN.
    • Establishment of an induced memory response in Pseudomonas aeruginosa during infection of a eukaryotic host.

      Kordes, Adrian; Grahl, Nora; Koska, Michal; Preusse, Matthias; Arce-Rodriguez, Alejandro; Abraham, Wolf-Rainer; Kaever, Volkhard; Häussler, Susanne; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Springer-Nature, 2019-08-01)
      In a given habitat, bacterial cells often experience recurrent exposures to the same environmental stimulus. The ability to memorize the past event and to adjust current behaviors can lead to efficient adaptation to the recurring stimulus. Here we demonstrate that the versatile bacterium Pseudomonas aeruginosa adopts a virulence phenotype after serial passage in the invertebrate model host Galleria mellonella. The virulence phenotype was not linked to the acquisition of genetic variations and was sustained for several generations, despite cultivation of the ex vivo virulence-adapted P. aeruginosa cells under rich medium conditions in vitro. Transcriptional reprogramming seemed to be induced by a host-specific food source, as reprogramming was also observed upon cultivation of P. aeruginosa in rich medium supplemented with polyunsaturated long-chain fatty acids. The establishment of induced memory responses adds a time dimension and seems to fill the gap between long-term evolutionary genotypic adaptation and short-term induced individual responses. Efforts to unravel the fundamental mechanisms that underlie the carry-over effect to induce such memory responses will continue to be of importance as hysteretic behavior can serve survival of bacterial populations in changing and challenging habitats.
    • Evaluation of a microarray-hybridization based method applicable for discovery of single nucleotide polymorphisms (SNPs) in the Pseudomonas aeruginosa genome

      Dötsch, Andreas; Pommerenke, Claudia; Bredenbruch, Florian; Geffers, Robert; Häussler, Susanne (2009-01-19)
      Abstract Background Whole genome sequencing techniques have added a new dimension to studies on bacterial adaptation, evolution and diversity in chronic infections. By using this powerful approach it was demonstrated that Pseudomonas aeruginosa undergoes intense genetic adaptation processes, crucial in the development of persistent disease. The challenge ahead is to identify universal infection relevant adaptive bacterial traits as potential targets for the development of alternative treatment strategies. Results We developed a microarray-based method applicable for discovery of single nucleotide polymorphisms (SNPs) in P. aeruginosa as an easy and economical alternative to whole genome sequencing. About 50% of all SNPs theoretically covered by the array could be detected in a comparative hybridization of PAO1 and PA14 genomes at high specificity (> 0.996). Variations larger than SNPs were detected at much higher sensitivities, reaching nearly 100% for genetic differences affecting multiple consecutive probe oligonucleotides. The detailed comparison of the in silico alignment with experimental hybridization data lead to the identification of various factors influencing sensitivity and specificity in SNP detection and to the identification of strain specific features such as a large deletion within the PA4684 and PA4685 genes in the Washington Genome Center PAO1. Conclusion The application of the genome array as a tool to identify adaptive mutations, to depict genome organizations, and to identify global regulons by the "ChIP-on-chip" technique will expand our knowledge on P. aeruginosa adaptation, evolution and regulatory mechanisms of persistence on a global scale and thus advance the development of effective therapies to overcome persistent disease.
    • Evolutionary conservation of essential and highly expressed genes in Pseudomonas aeruginosa.

      Dötsch, Andreas; Klawonn, Frank; Jarek, Michael; Scharfe, Maren; Blöcker, Helmut; Häussler, Susanne; Helmholtz Centre for infection research, Inhoffenstr. 7, D-38124 Braunschweig, Germany. (2010)
      The constant increase in development and spread of bacterial resistance to antibiotics poses a serious threat to human health. New sequencing technologies are now on the horizon that will yield massive increases in our capacity for DNA sequencing and will revolutionize the drug discovery process. Since essential genes are promising novel antibiotic targets, the prediction of gene essentiality based on genomic information has become a major focus.
    • Ex vivo transcriptional profiling reveals a common set of genes important for the adaptation of Pseudomonas aeruginosa to chronically infected host sites.

      Bielecki, Piotr; Komor, Uliana; Bielecka, Agata; Müsken, Mathias; Puchałka, Jacek; Pletz, Mathias W; Ballmann, Manfred; Martins dos Santos, Vítor A P; Weiss, Siegfried; Häussler, Susanne; et al. (2013-02)
      The opportunistic bacterium Pseudomonas aeruginosa is a major nosocomial pathogen causing both devastating acute and chronic persistent infections. During the course of an infection, P.  aeruginosa rapidly adapts to the specific conditions within the host. In the present study, we aimed at the identification of genes that are highly expressed during biofilm infections such as in chronically infected lungs of patients with cystic fibrosis (CF), burn wounds and subcutaneous mouse tumours. We found a common subset of differentially regulated genes in all three in vivo habitats and evaluated whether their inactivation impacts on the bacterial capability to form biofilms in vitro and to establish biofilm-associated infections in a murine model. Additive effects on biofilm formation and host colonization were discovered by the combined inactivation of several highly expressed genes. However, even combined inactivation was not sufficient to abolish the establishment of an infection completely. These findings can be interpreted as evidence that either redundant traits encode functions that are essential for in vivo survival and chronic biofilm infections and/or bacterial adaptation is considerably achieved independently of transcription levels. Supplemental screens, will have to be applied in order to identify the minimal set of key genes essential for the establishment of chronic infectious diseases.
    • Expression of the MexXY aminoglycoside efflux pump and presence of an aminoglycoside modifying enzyme in clinical isolates are highly correlated.

      Seupt, Alexander; Schniederjans, Monika; Tomasch, Jürgen; Häussler, Susanne; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (ASM, 2020-10-12)
      The impact of MexXY efflux pump expression on aminoglycoside resistance in clinical Pseudomonas aeruginosa isolates has been debated. In this study, we found that in general, elevated mexXY gene expression levels in clinical P. aeruginosa isolates confer to slight increases in aminoglycoside MIC levels, however those levels rarely lead to clinically relevant resistance phenotypes. The main driver of resistance in the clinical isolates studied here was the acquisition of aminoglycoside modifying enzymes (AMEs). Nevertheless, acquisition of an AME was strongly associated with mexY overexpression. In line with this observation, we demonstrate that the introduction of a gentamicin acetyl-transferase confers to full gentamicin resistance levels in a P. aeruginosa type strain only if the MexXY efflux pump was active. We discuss that increased mexXY activity in clinical AME harboring P. aeruginosa isolates might affect ion fluxes at the bacterial cell membrane and thus might play a role in the establishment of enhanced fitness that extends beyond aminoglycoside resistance.
    • The extensive set of accessory Pseudomonas aeruginosa genomic components.

      Pohl, Sarah; Klockgether, Jens; Eckweiler, Denitsa; Khaledi, Ariane; Schniederjans, Monika; Chouvarine, Philippe; Tümmler, Burkhard; Häussler, Susanne (2014-07)
      Up to 20% of the chromosomal Pseudomonas aeruginosa DNA belong to the so-called accessory genome. Its elements are specific for subgroups or even single strains and are likely acquired by horizontal gene transfer (HGT). Similarities of the accessory genomic elements to DNA from other bacterial species, mainly the DNA of γ- and β-proteobacteria, indicate a role of interspecies HGT. In this study, we analysed the expression of the accessory genome in 150 clinical P. aeruginosa isolates as uncovered by transcriptome sequencing and the presence of accessory genes in eleven additional isolates. Remarkably, despite the large number of P. aeruginosa strains that have been sequenced to date, we found new strain-specific compositions of accessory genomic elements and a high portion (10-20%) of genes without P. aeruginosa homologues. Although some genes were detected to be expressed/present in several isolates, individual patterns regarding the genes, their functions and the possible origin of the DNA were widespread among the tested strains. Our results demonstrate the unaltered potential to discover new traits within the P. aeruginosa population and underline that the P. aeruginosa pangenome is likely to increase with increasing sequence information.
    • Genetic determinants of Pseudomonas aeruginosa fitness during biofilm growth.

      Schinner, Silvia; Engelhardt, Florian; Preusse, Matthias; Thöming, Janne Gesine; Tomasch, Jürgen; Häussler, Susanne; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Elsevier, 2020-04-02)
      Pseudomonas aeruginosa is an environmental bacterium and an opportunistic human pathogen. It is also a well-established model organism to study bacterial adaptation to stressful conditions, such as those encountered during an infection process in the human host. Advancing knowledge on P. aeruginosa adaptation to biofilm growth conditions is bound to reveal novel strategies and targets for the treatment of chronic biofilm-associated infections. Here, we generated transposon insertion libraries in three P. aeruginosa strain backgrounds and determined the relative frequency of each insertion following biofilm growth using transposon sequencing. We demonstrate that in general the SOS response, several tRNA modifying enzymes as well as adaptation to microaerophilic growth conditions play a key role in bacterial survival under biofilm growth conditions. On the other hand, presence of genes involved in motility and PQS signaling were less important during biofilm growth. Several mutants exhibiting transposon insertions in genes detected in our screen were validated for their biofilm growth capabilities and biofilm specific transcriptional responses using independently generated transposon mutants. Our results provide new insights into P. aeruginosa adaptation to biofilm growth conditions. The detection of previously unknown determinants of biofilm survival supports the use of transposon insertion sequencing as a global genomic technology for understanding the establishment of difficult to treat biofilm-associated infections.
    • Genetically diverse Pseudomonas aeruginosa populations display similar transcriptomic profiles in a cystic fibrosis explanted lung.

      Kordes, Adrian; Preusse, Matthias; Willger, Sven D; Braubach, Peter; Jonigk, Danny; Haverich, Axel; Warnecke, Gregor; Häussler, Susanne; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Springer-Nature, 2019-07-30)
      Previous studies have demonstrated substantial genetic diversification of Pseudomonas aeruginosa across sub-compartments in cystic fibrosis (CF) lungs. Here, we isolate P. aeruginosa from five different sampling areas in the upper and lower airways of an explanted CF lung, analyze ex vivo transcriptional profiles by RNA-seq, and use colony re-sequencing and deep population sequencing to determine the genetic diversity within and across the various sub-compartments. We find that, despite genetic variation, the ex vivo transcriptional profiles of P. aeruginosa populations inhabiting different regions of the CF lung are similar. Although we cannot estimate the extent to which the transcriptional response recorded here actually reflects the in vivo transcriptomes, our results indicate that there may be a common in vivo transcriptional profile in the CF lung environment.
    • Host-induced spermidine production in motile triggers phagocytic uptake.

      Felgner, Sebastian; Preusse, Matthias; Beutling, Ulrike; Stahnke, Stephanie; Pawar, Vinay; Rohde, Manfred; Brönstrup, Mark; Stradal, Theresia; Häussler, Susanne; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (elifeSciences, 2020-09-22)
      Exploring the complexity of host-pathogen communication is vital to understand why microbes persist within a host, while others are cleared. Here, we employed a dual-sequencing approach to unravel conversational turn-taking of dynamic host-pathogen communications. We demonstrate that upon hitting a host cell, motile Pseudomonas aeruginosa induce a specific gene expression program. This results in the expression of spermidine on the surface, which specifically activates the PIP3-pathway to induce phagocytic uptake into primary or immortalized murine cells. Non-motile bacteria are more immunogenic due to a lower expression of arnT upon host-cell contact, but do not produce spermidine and are phagocytosed less. We demonstrate that not only the presence of pathogen inherent molecular patterns induces immune responses, but that bacterial motility is linked to a host-cell-induced expression of additional immune modulators. Our results emphasize on the value of integrating microbiological and immunological findings to unravel complex and dynamic host-pathogen interactions.
    • Human airway mucus alters susceptibility of Pseudomonas aeruginosa biofilms to tobramycin, but not colistin.

      Müller, Laura; Murgia, Xabier; Siebenbürger, Lorenz; Börger, Carsten; Schwarzkopf, Konrad; Sewald, Katherina; Häussler, Susanne; Braun, Armin; Lehr, Claus-Michael; Hittinger, Marius; et al.
      Objectives: In the context of cystic fibrosis, Pseudomonas aeruginosa biofilms often develop in the vicinity of airway mucus, which acts as a protective physical barrier to inhaled matter. However, mucus can also adsorb small drug molecules administered as aerosols, including antibiotics, thereby reducing their bioavailability. The efficacy of antibiotics is typically assessed by determining the MIC using in vitro assays. This widespread technique, however, does not consider either bacterial biofilm formation or the influence of mucus, both of which may act as diffusion barriers, potentially limiting antibiotic efficacy. Methods: We grew P. aeruginosa biofilms in the presence or absence of human tracheal mucus and tested their susceptibility to tobramycin and colistin. Results: A significant reduction of tobramycin efficacy was observed when P. aeruginosa biofilms were grown in the presence of mucus compared with those grown in the absence of mucus. Diffusion of tobramycin through mucus was reduced; however, this reduction was more pronounced in biofilm/mucus mixtures, suggesting that biofilms in the presence of mucus respond differently to antibiotic treatment. In contrast, the influence of mucus on colistin efficacy was almost negligible and no differences in mucus permeability were observed. Conclusions: These findings underline the important role of mucus in the efficacy of anti-infective drugs.
    • Identification and quantification of (t)RNA modifications in Pseudomonas aeruginosa by liquid chromatography-tandem mass spectrometry.

      Grobe, Svenja; Doberenz, Sebastian; Ferreira, Kevin; Krueger, Jonas; Brönstrup, Mark; Kaever, Volkhard; Häußler, Susanne; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Wiley-Blackwell, 2019-01-15)
      Transfer RNA (tRNA) modifications impact the structure and function of tRNAs thus affecting the efficiency and fidelity of translation. In the opportunistic pathogen Pseudomonas aeruginosa translational regulation plays an important but less defined role in the adaptation to changing environments. In this study, we explored tRNA modifications in P. aeruginosa using LC-MS/MS based approaches. Neutral Loss Scan (NLS) demonstrated the potential to identify previously unknown modifications, while Multiple Reaction Monitoring (MRM) can detect modifications with high specificity and sensitivity. In this study, the MRM-based external calibration method allowed for quantification of the 4 canonical and 32 modified ribonucleosides, of which 21 tRNA modifications were quantified in the total tRNA pool of P. aeruginosa PA14. We also purified the single tRNA isoacceptors tRNA-ArgUCU, tRNA-LeuCAA and tRNA-TrpCCA and determined, both qualitatively and quantitatively, their specific modification pattern. Deeper insights into the nature and dynamics of tRNA modifications in P. aeruginosa will pave the way for further studies on posttranscriptional gene regulation as a relatively unexplored molecular mechanism of controlling bacterial pathogenicity and life style.
    • Identification of a Pseudomonas aeruginosa PAO1 DNA Methyltransferase, Its Targets, and Physiological Roles.

      Doberenz, Sebastian; Eckweiler, Denitsa; Reichert, Olga; Jensen, Vanessa; Bunk, Boyke; Spröer, Cathrin; Kordes, Adrian; Frangipani, Emanuela; Luong, Khai; Korlach, Jonas; et al. (2017-02-21)
      DNA methylation is widespread among prokaryotes, and most DNA methylation reactions are catalyzed by adenine DNA methyltransferases, which are part of restriction-modification (R-M) systems. R-M systems are known for their role in the defense against foreign DNA; however, DNA methyltransferases also play functional roles in gene regulation. In this study, we used single-molecule real-time (SMRT) sequencing to uncover the genome-wide DNA methylation pattern in the opportunistic pathogen Pseudomonas aeruginosa PAO1. We identified a conserved sequence motif targeted by an adenine methyltransferase of a type I R-M system and quantified the presence of N(6)-methyladenine using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Changes in the PAO1 methylation status were dependent on growth conditions and affected P. aeruginosa pathogenicity in a Galleria mellonella infection model. Furthermore, we found that methylated motifs in promoter regions led to shifts in sense and antisense gene expression, emphasizing the role of enzymatic DNA methylation as an epigenetic control of phenotypic traits in P. aeruginosa Since the DNA methylation enzymes are not encoded in the core genome, our findings illustrate how the acquisition of accessory genes can shape the global P. aeruginosa transcriptome and thus may facilitate adaptation to new and challenging habitats.IMPORTANCE With the introduction of advanced technologies, epigenetic regulation by DNA methyltransferases in bacteria has become a subject of intense studies. Here we identified an adenosine DNA methyltransferase in the opportunistic pathogen Pseudomonas aeruginosa PAO1, which is responsible for DNA methylation of a conserved sequence motif. The methylation level of all target sequences throughout the PAO1 genome was approximated to be in the range of 65 to 85% and was dependent on growth conditions. Inactivation of the methyltransferase revealed an attenuated-virulence phenotype in the Galleria mellonella infection model. Furthermore, differential expression of more than 90 genes was detected, including the small regulatory RNA prrF1, which contributes to a global iron-sparing response via the repression of a set of gene targets. Our finding of a methylation-dependent repression of the antisense transcript of the prrF1 small regulatory RNA significantly expands our understanding of the regulatory mechanisms underlying active DNA methylation in bacteria.
    • Identification of the alternative sigma factor SigX regulon and its implications for Pseudomonas aeruginosa pathogenicity.

      Blanka, Andrea; Schulz, Sebastian; Eckweiler, Denitsa; Franke, Raimo; Bielecka, Agata; Nicolai, Tanja; Casilag, Fiordiligie; Düvel, Juliane; Abraham, Wolf-Rainer; Kaever, Volkhard; et al. (2014-01)
      Pseudomonas aeruginosa is distinguished by its broad metabolic diversity and its remarkable capability for adaptation, which relies on a large collection of transcriptional regulators and alternative sigma (σ) factors. The largest group of alternative σ factors is that of the extracytoplasmic function (ECF) σ factors, which control key transduction pathways for maintenance of envelope homeostasis in response to external stress and cell growth. In addition, there are specific roles of alternative σ factors in regulating the expression of virulence and virulence-associated genes. Here, we analyzed a deletion mutant of the ECF σ factor SigX and applied mRNA profiling to define the SigX-dependent regulon in P. aeruginosa in response to low-osmolarity-medium conditions. Furthermore, the combination of transcriptional data with chromatin immunoprecipitation (ChIP) followed by high-throughput sequencing (ChIP-seq) led to the identification of the DNA binding motif of SigX. Genome-wide mapping of SigX-binding regions revealed enrichment of downstream genes involved in fatty acid biosynthesis, type III secretion, swarming and cyclic di-GMP (c-di-GMP) signaling. In accordance, a sigX deletion mutant exhibited altered fatty acid composition of the cell membrane, reduced cytotoxicity, impaired swarming activity, elevated c-di-GMP levels, and increased biofilm formation. In conclusion, a combination of ChIP-seq with transcriptional profiling and bioinformatic approaches to define consensus DNA binding sequences proved to be effective for the elucidation of the regulon of the alternative σ factor SigX, revealing its role in complex virulence-associated phenotypes in P. aeruginosa.
    • The immunogenic potential of bacterial flagella for Salmonella-mediated tumor therapy.

      Felgner, Sebastian; Spöring, Imke; Pawar, Vinay; Kocijancic, Dino; Preusse, Matthias; Falk, Christine; Rohde, Manfred; Häussler, Susanne; Weiss, Siegfried; Erhardt, Marc; et al. (Wiley-Blackwell, 2019-11-21)
      Genetically engineered Salmonella Typhimurium are potent vectors for prophylactic and therapeutic measures against pathogens as well as cancer. This is based on the potent adjuvanticity that supports strong immune responses. The physiology of Salmonella is well understood. It simplifies engineering of both enhanced immune‐stimulatory properties as well as safety features, thus, resulting in an appropriate balance between attenuation and efficacy for clinical applications. A major virulence factor of Salmonella is the flagellum. It is also a strong pathogen‐associated molecular pattern recognized by extra‐ and intracellular receptors of immune cells of the host. At the same time, it represents a serious metabolic burden. Accordingly, the bacteria evolved tight regulatory mechanisms that control flagella synthesis in vivo. Here, we systematically investigated the immunogenicity and adjuvant properties of various flagella mutants of Salmonella in vitro and in a mouse cancer model in vivo. We found that mutants lacking the flagellum‐specific ATPase FliHIJ or the inner membrane ring FliF displayed the greatest stimulatory capacity and strongest anti‐tumor effects, while remaining safe in vivo. Scanning electron microscopy revealed the presence of outer membrane vesicles in the ΔfliF and ΔfliHIJ mutants. Finally, the combination of the ΔfliF and ΔfliHIJ mutations with our previously described attenuated and immunogenic background strain SF102 displayed strong efficacy against the highly resistant cancer cell line RenCa. We thus conclude that manipulating flagella biosynthesis has great potential for the construction of highly efficacious and versatile Salmonella vector strains.
    • Importance of flagella in acute and chronic Pseudomonas aeruginosa infections.

      Lorenz, Anne; Preuße, Matthias; Bruchmann, Sebastian; Pawar, Vinay; Grahl, Nora; Pils, Marina C; Nolan, Laura M; Filloux, Alain; Weiss, Siegfried; Häussler, Susanne; et al. (Wiley-Blackwell, 2018-11-08)
      Pseudomonas aeruginosa is an environmental microorganism and a causative agent of diverse acute and chronic, biofilm-associated infections. Advancing research-based knowledge on its adaptation to conditions within the human host is bound to reveal novel strategies and targets for therapeutic intervention. Here, we investigated the traits that P. aeruginosa PA14 as well as a virulence attenuated ΔlasR mutant need to survive in selected murine infection models. Experimentally, the genetic programs that the bacteria use to adapt to biofilm-associated versus acute infections were dissected by passaging transposon mutant libraries through mouse lungs (acute) or mouse tumours (biofilm-infection). Adaptive metabolic changes of P. aeruginosa were generally required during both infection processes. Counter-selection against flagella expression was observed during acute lung infections. Obviously, avoidance of flagella-mediated activation of host immunity is advantageous for the wildtype bacteria. For the ΔlasR mutant, loss of flagella did not confer a selective advantage. Apparently, other pathogenesis mechanisms are active in this virulence attenuated strain. In contrast, the infective process of P. aeruginosa in the chronic biofilm model apparently required expression of flagellin. Together, our findings imply that the host immune reactions against the infectious agent are very decisive for acuteness and duration of the infectious disease. They direct disease outcome.