• Login
    Search 
    •   Home
    • Dept. of molecular bacteriology (MOBA)
    • publications of the departmentment of molecular bacteriology(MOBA)
    • Search
    •   Home
    • Dept. of molecular bacteriology (MOBA)
    • publications of the departmentment of molecular bacteriology(MOBA)
    • Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of HZICommunitiesTitleAuthorsIssue DateSubmit DateSubjectsJournalTypesSubject (MeSH)This CollectionTitleAuthorsIssue DateSubmit DateSubjectsJournalTypesSubject (MeSH)

    My Account

    LoginRegister

    Filter by Category

    Journal
    Journal of bacteriology (3)
    AuthorsHäussler, Susanne (2)Abraham, Wolf-Rainer (1)Abraham, Wolf-Rainer (1) ccBielecka, Agata (1)Blanka, Andrea (1)View MoreYear (Issue Date)2014 (2)2013 (1)Types
    Article (3)

    Local Links

    About: PolicyHelmholtz-Zentrum für Infektionsforschung HomepageHZI-Library HomepageContact usOpen AccessPublishing ApproachGetting StartedEditing ProfileBrowsing OptionsUsing SearchSubmitting Content

    Statistics

    Display statistics
     

    Search

    Show Advanced FiltersHide Advanced Filters

    Filters

    Now showing items 1-3 of 3

    • List view
    • Grid view
    • Sort Options:
    • Relevance
    • Title Asc
    • Title Desc
    • Issue Date Asc
    • Issue Date Desc
    • Results Per Page:
    • 5
    • 10
    • 20
    • 40
    • 60
    • 80
    • 100

    • 3CSV
    • 3RefMan
    • 3EndNote
    • 3BibTex
    • Selective Export
    • Select All
    • Help
    Thumbnail

    Biofilms 2012: new discoveries and significant wrinkles in a dynamic field.

    Haussler, Susanne; Fuqua, Clay (2013-07)
    The ASM 6th Conference on Biofilms was held in Miami, Florida, 29 September to 4 October, 2012. The conference provided an opportunity for the exchange of new findings and ideas with regard to biofilm research. A wide range of findings, spanning applied biology, evolution, ecology, physiology, and molecular biology, were presented at the conference. This review summarizes the presentations with regard to emerging biofilm-related themes.
    Thumbnail

    The PqsR and RhlR transcriptional regulators determine the level of Pseudomonas quinolone signal synthesis in Pseudomonas aeruginosa by producing two different pqsABCDE mRNA isoforms.

    Brouwer, Stephan; Pustelny, Christian; Ritter, Christiane; Klinkert, Birgit; Narberhaus, Franz; Häussler, Susanne (2014-12)
    Regulation of gene expression plays a key role in bacterial adaptability to changes in the environment. An integral part of this gene regulatory network is achieved via quorum sensing (QS) systems that coordinate bacterial responses under high cellular densities. In the nosocomial pathogen Pseudomonas aeruginosa, the 2-alkyl-4-quinolone (pqs) signaling pathway is crucial for bacterial survival under stressful conditions. Biosynthesis of the Pseudomonas quinolone signal (PQS) is dependent on the pqsABCDE operon, which is positively regulated by the LysR family regulator PqsR and repressed by the transcriptional regulator protein RhlR. However, the molecular mechanisms underlying this inhibition have remained elusive. Here, we demonstrate that not only PqsR but also RhlR activates transcription of pqsA. The latter uses an alternative transcriptional start site and induces expression of a longer transcript that forms a secondary structure in the 5' untranslated leader region. As a consequence, access of the ribosome to the Shine-Dalgarno sequence is restricted and translation efficiency reduced. We propose a model of a novel posttranscriptional regulation mechanism that fine-tunes PQS biosynthesis, thus highlighting the complexity of quorum sensing in P. aeruginosa.
    Thumbnail

    Identification of the alternative sigma factor SigX regulon and its implications for Pseudomonas aeruginosa pathogenicity.

    Blanka, Andrea; Schulz, Sebastian; Eckweiler, Denitsa; Franke, Raimo; Bielecka, Agata; Nicolai, Tanja; Casilag, Fiordiligie; Düvel, Juliane; Abraham, Wolf-Rainer; Kaever, Volkhard; et al. (2014-01)
    Pseudomonas aeruginosa is distinguished by its broad metabolic diversity and its remarkable capability for adaptation, which relies on a large collection of transcriptional regulators and alternative sigma (σ) factors. The largest group of alternative σ factors is that of the extracytoplasmic function (ECF) σ factors, which control key transduction pathways for maintenance of envelope homeostasis in response to external stress and cell growth. In addition, there are specific roles of alternative σ factors in regulating the expression of virulence and virulence-associated genes. Here, we analyzed a deletion mutant of the ECF σ factor SigX and applied mRNA profiling to define the SigX-dependent regulon in P. aeruginosa in response to low-osmolarity-medium conditions. Furthermore, the combination of transcriptional data with chromatin immunoprecipitation (ChIP) followed by high-throughput sequencing (ChIP-seq) led to the identification of the DNA binding motif of SigX. Genome-wide mapping of SigX-binding regions revealed enrichment of downstream genes involved in fatty acid biosynthesis, type III secretion, swarming and cyclic di-GMP (c-di-GMP) signaling. In accordance, a sigX deletion mutant exhibited altered fatty acid composition of the cell membrane, reduced cytotoxicity, impaired swarming activity, elevated c-di-GMP levels, and increased biofilm formation. In conclusion, a combination of ChIP-seq with transcriptional profiling and bioinformatic approaches to define consensus DNA binding sequences proved to be effective for the elucidation of the regulon of the alternative σ factor SigX, revealing its role in complex virulence-associated phenotypes in P. aeruginosa.
    DSpace software copyright © 2002-2019  DuraSpace
    Quick Guide | Kontakt | Feedback abschicken
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.