• BCL6--regulated by AhR/ARNT and wild-type MEF2B--drives expression of germinal center markers MYBL1 and LMO2.

      Ding, Jie; Dirks, Wilhelm G; Ehrentraut, Stefan; Geffers, Robert; MacLeod, Roderick A F; Nagel, Stefan; Pommerenke, Claudia; Romani, Julia; Scherr, Michaela; Vaas, Lea A I; et al. (2015-06)
      Genetic heterogeneity is widespread in tumors, but poorly documented in cell lines. According to immunoglobulin hypermutation analysis, the diffuse large B-cell lymphoma cell line U-2932 comprises two subpopulations faithfully representing original tumor subclones. We set out to identify molecular causes underlying subclone-specific expression affecting 221 genes including surface markers and the germinal center oncogenes BCL6 and MYC. Genomic copy number variations explained 58/221 genes differentially expressed in the two U-2932 clones. Subclone-specific expression of the aryl-hydrocarbon receptor (AhR) and the resulting activity of the AhR/ARNT complex underlaid differential regulation of 11 genes including MEF2B. Knock-down and inhibitor experiments confirmed that AhR/ARNT regulates MEF2B, a key transcription factor for BCL6. AhR, MEF2B and BCL6 levels correlated not only in the U-2932 subclones but in the majority of 23 cell lines tested, indicting overexpression of AhR as a novel mechanism behind BCL6 diffuse large B-cell lymphoma. Enforced modulation of BCL6 affected 48/221 signature genes. Although BCL6 is known as a transcriptional repressor, 28 genes were up-regulated, including LMO2 and MYBL1 which, like BCL6, signify germinal center diffuse large B-cell lymphoma. Supporting the notion that BCL6 can induce gene expression, BCL6 and the majority of potential targets were co-regulated in a series of B-cell lines. In conclusion, genomic copy number aberrations, activation of AhR/ARNT, and overexpression of BCL6 are collectively responsible for differential expression of more than 100 genes in subclones of the U-2932 cell line. It is particularly interesting that BCL6 - regulated by AhR/ARNT and wild-type MEF2B - may drive expression of germinal center markers in diffuse large B-cell lymphoma.
    • Differential roles for MBD2 and MBD3 at methylated CpG islands, active promoters and binding to exon sequences.

      Günther, Katharina; Rust, Mareike; Leers, Joerg; Boettger, Thomas; Scharfe, Maren; Jarek, Michael; Bartkuhn, Marek; Renkawitz, Rainer; Institute for Genetics, Justus-Liebig-University, D35392 Giessen, Germany. (2013-03-01)
      The heterogeneous collection of nucleosome remodelling and deacetylation (NuRD) complexes can be grouped into the MBD2- or MBD3-containing complexes MBD2-NuRD and MBD3-NuRD. MBD2 is known to bind to methylated CpG sequences in vitro in contrast to MBD3. Although functional differences have been described, a direct comparison of MBD2 and MBD3 in respect to genome-wide binding and function has been lacking. Here, we show that MBD2-NuRD, in contrast to MBD3-NuRD, converts open chromatin with euchromatic histone modifications into tightly compacted chromatin with repressive histone marks. Genome-wide, a strong enrichment for MBD2 at methylated CpG sequences is found, whereas CpGs bound by MBD3 are devoid of methylation. MBD2-bound genes are generally lower expressed as compared with MBD3-bound genes. When depleting cells for MBD2, the MBD2-bound genes increase their activity, whereas MBD2 plus MBD3-bound genes reduce their activity. Most strikingly, MBD3 is enriched at active promoters, whereas MBD2 is bound at methylated promoters and enriched at exon sequences of active genes.