Recent Submissions

  • Worlds Apart - Transcriptome Profiles of Key Oral Microbes in the Periodontal Pocket Compared to Single Laboratory Culture Reflect Synergistic Interactions.

    Deng, Zhi-Luo; Sztajer, Helena; Jarek, Michael; Bhuju, Sabin; Wagner-Döbler, Irene; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Frontiers, 2018-02-06)
    Periodontitis is a worldwide prevalent oral disease which results from dysbiosis of the periodontal microbiome. Some of the most active microbial players, e.g., Porphyromonas gingivalis, Treponema denticola, and Fusobacterium nucleatum, have extensively been studied in the laboratory, but it is unclear to which extend these findings can be transferred to in vivo conditions. Here we show that the transcriptional profiles of P. gingivalis, T. denticola, and F. nucleatum in the periodontal niche are distinct from those in single laboratory culture and exhibit functional similarities. GO (gene ontology) term enrichment analysis showed up-regulation of transporters, pathogenicity related traits and hemin/heme uptake mechanisms for all three species in vivo. Differential gene expression analysis revealed that cysteine proteases, transporters and hemin/heme-binding proteins were highly up-regulated in the periodontal niche, while genes involved in DNA modification were down-regulated. The data suggest strong interactions between those three species regarding protein degradation, iron up-take, and mobility in vivo, explaining their enhanced synergistic pathogenicity. We discovered a strikingly high frequency of Single Nucleotide Polymorphisms (SNPs) in vivo. For F. nucleatum we discovered a total of 127,729 SNPs in periodontal niche transcripts, which were found in similar frequency in health and disease and covered the entire genome, suggesting continuous evolution in the host. We conclude that metabolic interactions shape gene expression in vivo. Great caution is required when inferring pathogenicity of microbes from laboratory data, and microdiversity is an important adaptive trait of natural communities.
  • Lead-seq: transcriptome-wide structure probing in vivo using lead(II) ions.

    Twittenhoff, Christian; Brandenburg, Vivian B; Righetti, Francesco; Nuss, Aaron M; Mosig, Axel; Dersch, Petra; Narberhaus, Franz; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Oxfford University Press, 2020-05-28)
    The dynamic conformation of RNA molecules within living cells is key to their function. Recent advances in probing the RNA structurome in vivo, including the use of SHAPE (Selective 2'-Hydroxyl Acylation analyzed by Primer Extension) or kethoxal reagents or DMS (dimethyl sulfate), provided unprecedented insights into the architecture of RNA molecules in the living cell. Here, we report the establishment of lead probing in a global RNA structuromics approach. In order to elucidate the transcriptome-wide RNA landscape in the enteric pathogen Yersinia pseudotuberculosis, we combined lead(II) acetate-mediated cleavage of single-stranded RNA regions with high-throughput sequencing. This new approach, termed 'Lead-seq', provides structural information independent of base identity. We show that the method recapitulates secondary structures of tRNAs, RNase P RNA, tmRNA, 16S rRNA and the rpsT 5'-untranslated region, and that it reveals global structural features of mRNAs. The application of Lead-seq to Y. pseudotuberculosis cells grown at two different temperatures unveiled the first temperature-responsive in vivo RNA structurome of a bacterial pathogen. The translation of candidate genes derived from this approach was confirmed to be temperature regulated. Overall, this study establishes Lead-seq as complementary approach to interrogate intracellular RNA structures on a global scale.
  • The alarmones (p)ppGpp are part of the heat shock response of Bacillus subtilis.

    Schäfer, Heinrich; Beckert, Bertrand; Frese, Christian K; Steinchen, Wieland; Nuss, Aaron M; Beckstette, Michael; Hantke, Ingo; Driller, Kristina; Sudzinová, Petra; Krásný, Libor; et al. (PLOS, 2020-03-16)
    Bacillus subtilis cells are well suited to study how bacteria sense and adapt to proteotoxic stress such as heat, since temperature fluctuations are a major challenge to soil-dwelling bacteria. Here, we show that the alarmones (p)ppGpp, well known second messengers of nutrient starvation, are also involved in the heat stress response as well as the development of thermo-resistance. Upon heat-shock, intracellular levels of (p)ppGpp rise in a rapid but transient manner. The heat-induced (p)ppGpp is primarily produced by the ribosome-associated alarmone synthetase Rel, while the small alarmone synthetases RelP and RelQ seem not to be involved. Furthermore, our study shows that the generated (p)ppGpp pulse primarily acts at the level of translation, and only specific genes are regulated at the transcriptional level. These include the down-regulation of some translation-related genes and the up-regulation of hpf, encoding the ribosome-protecting hibernation-promoting factor. In addition, the alarmones appear to interact with the activity of the stress transcription factor Spx during heat stress. Taken together, our study suggests that (p)ppGpp modulates the translational capacity at elevated temperatures and thereby allows B. subtilis cells to respond to proteotoxic stress, not only by raising the cellular repair capacity, but also by decreasing translation to concurrently reduce the protein load on the cellular protein quality control system.
  • Adaptation to Photooxidative Stress: Common and Special Strategies of the Alphaproteobacteria and .

    Licht, Mathieu K; Nuss, Aaron M; Volk, Marcel; Konzer, Anne; Beckstette, Michael; Berghoff, Bork A; Klug, Gabriele; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (MDPI, 2020-02-19)
    Photosynthetic bacteria have to deal with the risk of photooxidative stress that occurs in presence of light and oxygen due to the photosensitizing activity of (bacterio-) chlorophylls. Facultative phototrophs of the genus Rhodobacter adapt the formation of photosynthetic complexes to oxygen and light conditions, but cannot completely avoid this stress if environmental conditions suddenly change. R. capsulatus has a stronger pigmentation and faster switches to phototrophic growth than R. sphaeroides. However, its photooxidative stress response has not been investigated. Here, we compare both species by transcriptomics and proteomics, revealing that proteins involved in oxidation-reduction processes, DNA, and protein damage repair play pivotal roles. These functions are likely universal to many phototrophs. Furthermore, the alternative sigma factors RpoE and RpoHII are induced in both species, even though the genetic localization of the rpoE gene, the RpoE protein itself, and probably its regulon, are different. Despite sharing the same habitats, our findings also suggest individual strategies. The crtIB-tspO operon, encoding proteins for biosynthesis of carotenoid precursors and a regulator of photosynthesis, and cbiX, encoding a putative ferrochelatase, are induced in R. capsulatus. This specific response might support adaptation by maintaining high carotenoid-to-bacteriochlorophyll ratios and preventing the accumulation of porphyrin-derived photosensitizers.
  • Identification of antibiotics that diminish disease in a murine model of enterohemorrhagic infection.

    Mühlen, Sabrina; Ramming, Isabell; Pils, Marina C; Koeppel, Martin; Glaser, Jana; Leong, John; Flieger, Antje; Stecher, Bärbel; Dersch, Petra; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (American society for microbiology, 2020-02-03)
    Infections with enterohemorrhagic Escherichia coli (EHEC) cause disease ranging from mild diarrhea to hemolytic uremic syndrome (HUS) and are the most common cause of renal failure in children in high income countries. The severity of the disease derives from the release of Shiga toxins (Stx). The use of antibiotics to treat EHEC infections is generally avoided as it can result in increased stx expression. Here, we systematically tested different classes of antibiotics and found that their influence on stx expression and release varies significantly. We assessed a selection of these antibiotics in vivo using the Citrobacter rodentium φstx2dact mouse model and show that stx2d-inducing antibiotics resulted in weight loss and kidney damage despite clearing the infection. However, several non-Stx-inducing antibiotics cleared bacterial infection without causing Stx-mediated pathology. Our results suggest that these antibiotics could be useful in the treatment of EHEC-infected human patients and decrease the risk of HUS development.
  • An RNA thermometer dictates production of a secreted bacterial toxin.

    Twittenhoff, Christian; Heroven, Ann Kathrin; Mühlen, Sabrina; Dersch, Petra; Narberhaus, Franz; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (PLOS, 2020-01-01)
    Frequent transitions of bacterial pathogens between their warm-blooded host and external reservoirs are accompanied by abrupt temperature shifts. A temperature of 37°C serves as reliable signal for ingestion by a mammalian host, which induces a major reprogramming of bacterial gene expression and metabolism. Enteric Yersiniae are Gram-negative pathogens accountable for self-limiting gastrointestinal infections. Among the temperature-regulated virulence genes of Yersinia pseudotuberculosis is cnfY coding for the cytotoxic necrotizing factor (CNFY), a multifunctional secreted toxin that modulates the host's innate immune system and contributes to the decision between acute infection and persistence. We report that the major determinant of temperature-regulated cnfY expression is a thermo-labile RNA structure in the 5'-untranslated region (5'-UTR). Various translational gene fusions demonstrated that this region faithfully regulates translation initiation regardless of the transcription start site, promoter or reporter strain. RNA structure probing revealed a labile stem-loop structure, in which the ribosome binding site is partially occluded at 25°C but liberated at 37°C. Consistent with translational control in bacteria, toeprinting (primer extension inhibition) experiments in vitro showed increased ribosome binding at elevated temperature. Point mutations locking the 5'-UTR in its 25°C structure impaired opening of the stem loop, ribosome access and translation initiation at 37°C. To assess the in vivo relevance of temperature control, we used a mouse infection model. Y. pseudotuberculosis strains carrying stabilized RNA thermometer variants upstream of cnfY were avirulent and attenuated in their ability to disseminate into mesenteric lymph nodes and spleen. We conclude with a model, in which the RNA thermometer acts as translational roadblock in a two-layered regulatory cascade that tightly controls provision of the CNFY toxin during acute infection. Similar RNA structures upstream of various cnfY homologs suggest that RNA thermosensors dictate the production of secreted toxins in a wide range of pathogens.
  • Discovering Yersinia-Host Interactions by Tissue Dual RNA-Seq.

    Kusmierek, Maria; Heroven, Ann Kathrin; Beckstette, Michael; Nuss, Aaron M; Dersch, Petra; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Springer, 2019-01-01)
    A detailed knowledge about virulence-relevant genes, as well as where and when they are expressed during the course of an infection is required to obtain a comprehensive understanding of the complex host-pathogen interactions. The development of unbiased probe-independent RNA sequencing (RNA-seq) approaches has dramatically changed transcriptomics. It allows simultaneous monitoring of genome-wide, infection-linked transcriptional alterations of the host tissue and colonizing pathogens. Here, we provide a detailed protocol for the preparation and analysis of lymphatic tissue infected with the mainly extracellularly growing pathogen Yersinia pseudotuberculosis. This method can be used as a powerful tool for the discovery of Yersinia-induced host responses, colonization and persistence strategies of the pathogen, and underlying regulatory processes. Furthermore, we describe computational methods with which we analyzed obtained datasets.
  • Diversity and community composition of particle-associated and free-living bacteria in mesopelagic and bathypelagic Southern Ocean water masses: Evidence of dispersal limitation in the Bransfield Strait

    Milici, Mathias; Vital, Marius; Tomasch, Jürgen; Badewien, Thomas H.; Giebel, Helge A.; Plumeier, Iris; Wang, Hui; Pieper, Dietmar H.; Wagner-Döbler, Irene; Simon, Meinhard; et al. (Wiley-Blackwell, 2017-05-01)
    The Southern Ocean constitutes about 10% of the global oceans' volume and is characterized by high primary production. Particulate organic matter (POM) is exported from the photic zone to the deep ocean and sustains life of particle associated (PA) and free-living (FL) bacterial communities in the dark realm. Little is known about the composition and diversity of PA and FL bacterial communities below the photic zone and how they differ among various regions of the Southern Ocean. Therefore, we investigated the composition of small (3–8 μm) and large (> 8 μm) PA and FL (0.2–3 μm) bacterial communities between 500 m and 3600 m in the Bransfield Strait, Drake Passage, and the south Atlantic Ocean featuring also Southern Ocean water masses. PA bacterial communities had a higher OTU richness and evenness than FL ones. Taxonomic analysis revealed a different community composition between FL and PA bacteria. A large number of OTUs belonging to diverse phyla (Bacteroidetes, Planctomycetes, Betaproteobacteria, Deltaproteobacteria, and Verrucomicrobia) were significantly enriched on particles; in contrast very few bacterial lineages were FL specialists. Life-style (FL vs. PA) and region (Bransfield basin vs. other regions) strongly influenced bacterial communities. Depth explained only marginal fraction of the total variation (∼ 12%), suggesting that selective processes driven by depth have a smaller effect in the Southern Ocean when compared to life-style (25%) and region (31%). Overall these data indicate a strong influence of isolated water masses such as the basin of the Bransfield Strait on the composition of bacterial communities in the dark ocean. © 2017 The Authors Limnology and Oceanography published by Wiley Periodicals, Inc. on behalf of Association for the Sciences of Limnology and Oceanography
  • Deep sequencing of biofilm microbiomes on dental composite materials.

    Conrads, Georg; Wendt, Laura Katharina; Hetrodt, Franziska; Deng, Zhi-Luo; Pieper, Dietmar; Abdelbary, Mohamed M H; Barg, Andree; Wagner-Döbler, Irene; Apel, Christian (2019-01-01)
    Background: The microbiome on dental composites has not been studied in detail before. It has not been conclusively clarified whether restorative materials influence the oral microbiome. Methods: We used Illumina Miseq next-generation sequencing of the 16S V1-V2 region to compare the colonisation patterns of bovine enamel (BE) and the composite materials Grandio Flow (GF) and Grandio Blocs (GB) after 48 h in vivo in 14 volunteers. Applying a new method to maintain the oral microbiome ex vivo for 48 h also, we compared the microbiome on GF alone and with the new antimicrobial substance carolacton (GF+C). Results: All in vitro biofilm communities showed a higher diversity and richness than those grown in vivo but the very different atmospheric conditions must be considered. Contrary to expectations, there were only a few significant differences between BE and the composite materials GB and GF either in vivo or in vitro: Oribacterium, Peptostreptococcaceae [XI][G-1] and Streptococcus mutans were more prevalent and Megasphaera, Prevotella oulorum, Veillonella atypica, V. parvula, Gemella morbillorum, and Fusobacterium periodonticum were less prevalent on BE than on composites. In vivo, such preferences were only significant for Granulicatella adiacens (more prevalent on BE) and Fusobacterium nucleatum subsp. animalis (more prevalent on composites). On DNA sequence level, there were no significant differences between the biofilm communities on GF and GF+C. Conclusion: We found that the oral microbiome showed an increased richness when grown on various composites compared to BE in vitro, but otherwise changed only slightly independent of the in vivo or in vitro condition. Our new ex vivo biofilm model might be useful for pre-clinical testing of preventive strategies.
  • A bacterial secreted translocator hijacks riboregulators to control type III secretion in response to host cell contact.

    Kusmierek, Maria; Hoßmann, Jörn; Witte, Rebekka; Opitz, Wiebke; Vollmer, Ines; Volk, Marcel; Heroven, Ann Kathrin; Wolf-Watz, Hans; Dersch, Petra; HZI, Helmholtz -Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany. (PLOS, 2019-06-01)
    Numerous Gram-negative pathogens use a Type III Secretion System (T3SS) to promote virulence by injecting effector proteins into targeted host cells, which subvert host cell processes. Expression of T3SS and the effectors is triggered upon host cell contact, but the underlying mechanism is poorly understood. Here, we report a novel strategy of Yersinia pseudotuberculosis in which this pathogen uses a secreted T3SS translocator protein (YopD) to control global RNA regulators. Secretion of the YopD translocator upon host cell contact increases the ratio of post-transcriptional regulator CsrA to its antagonistic small RNAs CsrB and CsrC and reduces the degradosome components PNPase and RNase E levels. This substantially elevates the amount of the common transcriptional activator (LcrF) of T3SS/Yop effector genes and triggers the synthesis of associated virulence-relevant traits. The observed hijacking of global riboregulators allows the pathogen to coordinate virulence factor expression and also readjusts its physiological response upon host cell contact.
  • Comparative Transcriptomic Profiling of Yersinia enterocolitica O:3 and O:8 Reveals Major Expression Differences of Fitness- and Virulence-Relevant Genes Indicating Ecological Separation.

    Schmühl, Carina; Beckstette, Michael; Heroven, Ann Kathrin; Bunk, Boyke; Spröer, Cathrin; McNally, Alan; Overmann, Jörg; Dersch, Petra; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany.
    Yersinia enterocolitica is a zoonotic pathogen and an important cause of bacterial gastrointestinal infections in humans. Large-scale population genomic analyses revealed genetic and phenotypic diversity of this bacterial species, but little is known about the differences in the transcriptome organization, small RNA (sRNA) repertoire, and transcriptional output. Here, we present the first comparative high-resolution transcriptome analysis of Y. enterocolitica strains representing highly pathogenic phylogroup 2 (serotype O:8) and moderately pathogenic phylogroup 3 (serotype O:3) grown under four infection-relevant conditions. Our transcriptome sequencing (RNA-seq) approach revealed 1,299 and 1,076 transcriptional start sites and identified strain-specific sRNAs that could contribute to differential regulation among the phylogroups. Comparative transcriptomics further uncovered major gene expression differences, in particular, in the temperature-responsive regulon. Multiple virulence-relevant genes are differentially regulated between the two strains, supporting an ecological separation of phylogroups with certain niche-adapted properties. Strong upregulation of the ystA enterotoxin gene in combination with constitutive high expression of cell invasion factor InvA further showed that the toxicity of recent outbreak O:3 strains has increased. Overall, our report provides new insights into the specific transcriptome organization of phylogroups 2 and 3 and reveals gene expression differences contributing to the substantial phenotypic differences that exist between the lineages. IMPORTANCE Yersinia enterocolitica is a major diarrheal pathogen and is associated with a large range of gut-associated diseases. Members of this species have evolved into different phylogroups with genotypic variations. We performed the first characterization of the Y. enterocolitica transcriptional landscape and tracked the consequences of the genomic variations between two different pathogenic phylogroups by comparing their RNA repertoire, promoter usage, and expression profiles under four different virulence-relevant conditions. Our analysis revealed major differences in the transcriptional outputs of the closely related strains, pointing to an ecological separation in which one is more adapted to an environmental lifestyle and the other to a mostly mammal-associated lifestyle. Moreover, a variety of pathoadaptive alterations, including alterations in acid resistance genes, colonization factors, and toxins, were identified which affect virulence and host specificity. This illustrates that comparative transcriptomics is an excellent approach to discover differences in the functional output from closely related genomes affecting niche adaptation and virulence, which cannot be directly inferred from DNA sequences.
  • Design and characterization of dietary assessment in the German National Cohort.

    Knüppel, Sven; Clemens, Matthias; Conrad, Johanna; Gastell, Sylvia; Michels, Karin B; Leitzmann, Michael; Krist, Lilian; Pischon, Tobias; Krause, Gerard; Ahrens, Wolfgang; et al. (Springer Nature, 2019-01-15)
    BACKGROUND/OBJECTIVES: The aim of the study was to describe a novel dietary assessment strategy based on two instruments complemented by information from an external population applied to estimate usual food intake in the large-scale multicenter German National Cohort (GNC). As proof of concept, we applied the assessment strategy to data from a pretest study (2012-2013) to assess the feasibility of the novel assessment strategy. SUBJECTS/METHODS: First, the consumption probability for each individual was modeled using three 24 h food lists (24h-FLs) and frequencies from one food frequency questionnaire (FFQ). Second, daily consumed food amounts were estimated from the representative German National Nutrition Survey II (NVS II) taking the characteristics of the participants into account. Usual food intake was estimated using the product of consumption probability and amounts. RESULTS: We estimated usual intake of 41 food groups in 318 men and 377 women. The participation proportion was 100, 84.4, and 68.5% for the first, second, and third 24h-FL, respectively. We observed no associations between the probability of participating and lifestyle factors. The estimated distributions of usual food intakes were plausible and total energy was estimated to be 2707 kcal/day for men and 2103 kcal/day for women. The estimated consumption frequencies did not differ substantially between men and women with only few exceptions. The differences in energy intake between men and women were mostly due to differences in estimated daily amounts. CONCLUSIONS: The combination of repeated 24h-FLs, a FFQ, and consumption-day amounts from a reference population represents a user-friendly dietary assessment approach having generated plausible, but not yet validated, food intake values in the pretest study
  • Yersinia Pseudotuberculosis Modulates Regulatory T Cell Stability via Injection of Yersinia Outer Proteins in a Type III Secretion System-Dependent Manner.

    Elfiky, Ahmed; Bonifacius, Agnes; Pezoldt, Joern; Pasztoi, Maria; Chaoprasid, Paweena; Sadana, Pooja; El-Sherbeeny, Nagla; Hagras, Magda; Scrima, Andrea; Dersch, Petra; et al. (Akadémiai Kiadó, 2018-12-23)
    Adaptive immunity is essentially required to control acute infection with enteropathogenic
  • Contribution of the Cpx envelope stress system to metabolism and virulence regulation in Salmonella enterica serovar Typhimurium.

    Subramaniam, Sivaraman; Müller, Volker S; Hering, Nina A; Mollenkopf, Hans; Becker, Daniel; Heroven, Ann Kathrin; Dersch, Petra; Pohlmann, Anne; Tedin, Karsten; Porwollik, Steffen; et al. (PLOS, 2019-01-01)
    The Cpx-envelope stress system regulates the expression of virulence factors in many Gram-negative pathogens. In Salmonella enterica serovar Typhimurium deletion of the sensor kinase CpxA but not of the response regulator CpxR results in the down regulation of the key regulator for invasion, HilA encoded by the Salmonella pathogenicity island 1 (SPI-1). Here, we provide evidence that cpxA deletion interferes with dephosphorylation of CpxR resulting in increased levels of active CpxR and consequently in misregulation of target genes. 14 potential operons were identified to be under direct control of CpxR. These include the virulence determinants ecotin, the omptin PgtE, and the SPI-2 regulator SsrB. The Tat-system and the PocR regulator that together promote anaerobic respiration of tetrathionate on 1,2-propanediol are also under direct CpxR control. Notably, 1,2-propanediol represses hilA expression. Thus, our work demonstrates for the first time the involvement of the Cpx system in a complex network mediating metabolism and virulence function.
  • Metabolome and transcriptome-wide effects of the carbon storage regulator A in enteropathogenic Escherichia coli.

    Berndt, Volker; Beckstette, Michael; Volk, Marcel; Dersch, Petra; Brönstrup, Mark; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Springer-Nature, 2019-01-15)
    The carbon storage regulator A (CsrA) is a conserved global regulatory system known to control central carbon pathways, biofilm formation, motility, and pathogenicity. The aim of this study was to characterize changes in major metabolic pathways induced by CsrA in human enteropathogenic Escherichia coli (EPEC) grown under virulence factor-inducing conditions. For this purpose, the metabolomes and transcriptomes of EPEC and an isogenic ∆csrA mutant derivative were analyzed by untargeted mass spectrometry and RNA sequencing, respectively. Of the 159 metabolites identified from untargeted GC/MS and LC/MS data, 97 were significantly (fold change ≥ 1.5; corrected p-value ≤ 0.05) regulated between the knockout and the wildtype strain. A lack of csrA led to an accumulation of fructose-6-phosphate (F6P) and glycogen synthesis pathway products, whereas metabolites in lower glycolysis and the citric acid cycle were downregulated. Associated pathways from the citric acid cycle like aromatic amino acid and siderophore biosynthesis were also negatively influenced. The nucleoside salvage pathways were featured by an accumulation of nucleosides and nucleobases, and a downregulation of nucleotides. In addition, a pronounced downregulation of lyso-lipid metabolites was observed. A drastic change in the morphology in the form of vesicle-like structures of the ∆csrA knockout strain was visible by electron microscopy. Colanic acid synthesis genes were strongly (up to 50 fold) upregulated, and the abundance of colanic acid was 3 fold increased according to a colorimetric assay. The findings expand the scope of pathways affected by the csrA regulon and emphasize its importance as a global regulator.
  • An Unprecedented Medium-Chain Diunsaturated -acylhomoserine Lactone from Marine Group Bacteria.

    Ziesche, Lisa; Wolter, Laura; Wang, Hui; Brinkhoff, Thorsten; Pohlner, Marion; Engelen, Bert; Wagner-Döbler, Irene; Schulz, Stefan; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (MPDI, 2018-12-31)
    N-acylhomoserine lactones (AHLs), bacterial signaling compounds involved in quorum-sensing, are a structurally diverse group of compounds. We describe here the identification, synthesis, occurrence and biological activity of a new AHL, N-((2E,5Z)-2,5-dodecadienoyl)homoserine lactone (11) and its isomer N-((3E,5Z)-3,5-dodecadienoyl)homoserine lactone (13), occurring in several Roseobacter group bacteria (Rhodobacteraceae). The analysis of 26 strains revealed the presence of 11 and 13 in six of them originating from the surface of the macroalgae Fucus spiralis or sediments from the North Sea. In addition, 18 other AHLs were detected in 12 strains. Compound identification was performed by GC/MS. Mass spectral analysis revealed a diunsaturated C12 homoserine lactone as structural element of the new AHL. Synthesis of three likely candidate compounds, 11, 13 and N-((2E,4E)-2,4-dodecadienoyl)homoserine lactone (5), revealed the former to be the natural AHLs. Bioactivity test with quorum-sensing reporter strains showed high activity of all three compounds. Therefore, the configuration and stereochemistry of the double bonds in the acyl chain seemed to be unimportant for the activity, although the chains have largely different shapes, solely the chain length determining activity. In combination with previous results with other Roseobacter group bacteria, we could show that there is wide variance between AHL composition within the strains. Furthermore, no association of certain AHLs with different habitats like macroalgal surfaces or sediment could be detected. View Full-Text
  • Aspherical and Spherical InvA497-Functionalized Nanocarriers for Intracellular Delivery of Anti-Infective Agents.

    Castoldi, Arianna; Empting, Martin; De Rossi, Chiara; Mayr, Karsten; Dersch, Petra; Hartmann, Rolf; Müller, Rolf; Gordon, Sarah; Lehr, Claus-Michael; HIPS, Helmholtz-Institut für Pharmazeutische Forschung Saarland, Universitätscampus E8.1 66123 Saarbrücken, Germany. (Springer, 2018-12-05)
    The objective of this work was to evaluate the potential of polymeric spherical and aspherical invasive nanocarriers, loaded with antibiotic, to access and treat intracellular bacterial infections. Aspherical nanocarriers were prepared by stretching of spherical precursors, and both aspherical and spherical nanocarriers were surface-functionalized with the invasive protein InvA497. The relative uptake of nanocarriers into HEp-2 epithelial cells was then assessed. Nanocarriers were subsequently loaded with a preparation of the non-permeable antibiotic gentamicin, and tested for their ability to treat HEp-2 cells infected with the enteroinvasive bacterium Shigella flexneri. InvA497-functionalized nanocarriers of both spherical and aspherical shape showed a significantly improved rate and extent of uptake into HEp-2 cells in comparison to non-functionalized nanocarriers. Functionalized and antibiotic-loaded nanocarriers demonstrated a dose dependent killing of intracellular S. flexneri. A slight but significant enhancement of intracellular bacterial killing was also observed with aspherical as compared to spherical functionalized nanocarriers at the highest tested concentration. InvA497-functionalized, polymer-based nanocarriers were able to efficiently deliver a non-permeable antibiotic across host cell membranes to affect killing of intracellular bacteria. Functionalized nanocarriers with an aspherical shape showed an interesting future potential for intracellular infection therapy.
  • The Yersinia pseudotuberculosis Cpx envelope stress system contributes to transcriptional activation of rovM.

    Thanikkal, Edvin J; Gahlot, Dharmender K; Liu, Junfa; Fredriksson Sundbom, Marcus; Gurung, Jyoti M; Ruuth, Kristina; Francis, Monika K; Obi, Ikenna R; Thompson, Karl M; Chen, Shiyun; et al. (2018-12-06)
    The Gram-negative enteropathogen Yersinia pseudotuberculosis possesses a number of regulatory systems that detect cell envelope damage caused by noxious extracytoplasmic stresses. The CpxA sensor kinase and CpxR response regulator two-component regulatory system is one such pathway. Active Cpx signalling upregulates various factors designed to repair and restore cell envelope integrity. Concomitantly, this pathway also down-regulates key determinants of virulence. In Yersinia, cpxA deletion accumulates high levels of phosphorylated CpxR (CpxR~P). Accumulated CpxR~P directly repressed rovA expression and this limited expression of virulence-associated processes. A second transcriptional regulator, RovM, also negatively regulates rovA expression in response to nutrient stress. Hence, this study aimed to determine if CpxR~P can influence rovA expression through control of RovM levels. We determined that the active CpxR~P isoform bound to the promoter of rovM and directly induced its expression, which naturally associated with a concurrent reduction in rovA expression. Site-directed mutagenesis of the CpxR~P binding sequence in the rovM promoter region desensitised rovM expression to CpxR~P. These data suggest that accumulated CpxR~P inversely manipulates the levels of two global transcriptional regulators, RovA and RovM, and this would be expected to have considerable influence on Yersinia pathophysiology and metabolism.
  • Novel type of pilus associated with a Shiga-toxigenic E. coli hybrid pathovar conveys aggregative adherence and bacterial virulence.

    Lang, Christina; Fruth, Angelika; Holland, Gudrun; Laue, Michael; Mühlen, Sabrina; Dersch, Petra; Flieger, Antje; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Springer-Nature, 2018-12-05)
    A large German outbreak in 2011 was caused by a locus of enterocyte effacement (LEE)-negative enterohemorrhagic E. coli (EHEC) strain of the serotype O104:H4. This strain harbors markers that are characteristic of both EHEC and enteroaggregative E. coli (EAEC), including aggregative adhesion fimbriae (AAF) genes. Such rare EHEC/EAEC hybrids are highly pathogenic due to their possession of a combination of genes promoting severe toxicity and aggregative adhesion. We previously identified novel EHEC/EAEC hybrids and observed that one strain exhibited aggregative adherence but had no AAF genes. In this study, a genome sequence analysis showed that this strain belongs to the genoserotype O23:H8, MLST ST26, and harbors a 5.2 Mb chromosome and three plasmids. One plasmid carries some EAEC marker genes, such as aatA and genes with limited protein homology (11-61%) to those encoding the bundle-forming pilus (BFP) of enteropathogenic E. coli. Due to significant protein homology distance to known pili, we designated these as aggregate-forming pili (AFP)-encoding genes and the respective plasmid as pAFP. The afp operon was arranged similarly to the operon of BFP genes but contained an additional gene, afpA2, which is homologous to afpA. The deletion of the afp operon, afpA, or a nearby gene (afpR) encoding an AraC-like regulator, but not afpA2, led to a loss of pilin production, piliation, bacterial autoaggregation, and importantly, a >80% reduction in adhesion and cytotoxicity toward epithelial cells. Gene sets similar to the afp operon were identified in a variety of aatA-positive but AAF-negative intestinal pathogenic E. coli. In summary, we characterized widely distributed and novel fimbriae that are essential for aggregative adherence and cytotoxicity in a LEE-negative Shiga-toxigenic hybrid.
  • Screening for inhibitors of mutacin synthesis in Streptococcus mutans using fluorescent reporter strains.

    Premnath, Priyanka; Reck, Michael; Wittstein, Kathrin; Stadler, Marc; Wagner-Döbler, Irene; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (BMC, 2018-03-27)
    Within the polymicrobial dental plaque biofilm, bacteria kill competitors by excreting mixtures of bacteriocins, resulting in improved fitness and survival. Inhibiting their bacteriocin synthesis might therefore be a useful strategy to eliminate specific pathogens. We used Streptococcus mutans, a highly acidogenic inhabitant of dental plaque, as a model and searched for natural products that reduced mutacin synthesis. To this end we fused the promoter of mutacin VI to the GFP+ gene and integrated the construct into the genome of S. mutans UA159 by single homologous recombination. The resulting reporter strain 423p - gfp + was used to screen 297 secondary metabolites from different sources, mainly myxobacteria and fungi, for their ability to reduce the fluorescence of the fully induced reporter strain by > 50% while growth was almost unaffected (> 90% of control). Seven compounds with different chemical structures and different modes of action were identified. Erinacine C was subsequently validated and shown to inhibit transcription of all three mutacins of S. mutans. The areas of the inhibition zones of the sensor strains S. sanguinis and Lactococcus lactis were reduced by 35% to 61% in comparison to controls in the presence of erinacine C, demonstrating that the amount of active mutacins in the culture supernatants of S. mutans was reduced. Erinacines are cyathane diterpenes that were extracted from cultures of the edible mushroom Hericium erinaceus. They have anti-inflammatory, antimicrobial and neuroprotective effects. For erinacine C, a new biological activity was found here. We demonstrate the successful development of a whole-cell fluorescent reporter for the screening of natural compounds and report that erinacine C suppresses mutacin synthesis in S. mutans without affecting cell viability.

View more