• The delta subunit of RNA polymerase, RpoE, is a global modulator of Streptococcus mutans environmental adaptation.

      Xue, Xiaoli; Tomasch, Jürgen; Sztajer, Helena; Wagner-Döbler, Irene; Research Group Microbial Communication, Division of Cell Biology, Helmholtz-Centre for Infection Research, Inhoffenstr. 7, D-38124 Braunschweig, Germany. (2010-10)
      The delta subunit of RNA polymerase, RpoE, is widespread in low-G+C Gram-positive bacteria and is thought to play a role in enhancing transcriptional specificity by blocking RNA polymerase binding at weak promoter sites and stimulating RNA synthesis by accelerating core enzyme recycling. Despite the well-studied biochemical properties of RpoE, a role for this protein in vivo has not been defined in depth. In this study, we show that inactivation of rpoE in the human dental caries pathogen Streptococcus mutans causes impaired growth and loss of important virulence traits, including biofilm formation, resistance to antibiotics, and tolerance to environmental stresses. Complementation of the mutant with rpoE expressed in trans restored its phenotype to wild type. The luciferase fusion reporter showed that rpoE was highly transcribed throughout growth and that acid and hydrogen peroxide stresses repressed rpoE expression. Transcriptome profiling of wild-type and ΔrpoE cells in the exponential and early stationary phase of growth, under acid and hydrogen peroxide stress and under both stresses combined, revealed that genes involved in histidine synthesis, malolactic fermentation, biofilm formation, and antibiotic resistance were downregulated in the ΔrpoE mutant under all conditions. Moreover, the loss of RpoE resulted in dramatic changes in transport and metabolism of carbohydrates and amino acids. Interestingly, differential expression, mostly upregulation, of 330 noncoding regions was found. In conclusion, this study demonstrates that RpoE is an important global modulator of gene expression in S. mutans which is required for optimal growth and environmental adaptation.
    • Environmental biology of the marine Roseobacter lineage.

      Wagner-Döbler, Irene; Biebl, Hanno; National Research Institute for Biotechnology (GBF), Department for Cell Biology, 38124 Braunschweig, Germany. iwd@gbf.de (2006)
      The Roseobacter lineage is a phylogenetically coherent, physiologically heterogeneous group of alpha-Proteobacteria comprising up to 25% of marine microbial communities, especially in coastal and polar oceans, and it is the only lineage in which cultivated bacteria are closely related to environmental clones. Currently 41 subclusters are described, covering all major marine ecological niches (seawater, algal blooms, microbial mats, sediments, sea ice, marine invertebrates). Members of the Roseobacter lineage play an important role for the global carbon and sulfur cycle and the climate, since they have the trait of aerobic anoxygenic photosynthesis, oxidize the greenhouse gas carbon monoxide, and produce the climate-relevant gas dimethylsulfide through the degradation of algal osmolytes. Production of bioactive metabolites and quorum-sensing-regulated control of gene expression mediate their success in complex communities. Studies of representative isolates in culture, whole-genome sequencing, e.g., of Silicibacter pomeroyi, and the analysis of marine metagenome libraries have started to reveal the environmental biology of this important marine group.
    • Genetic variability of mutans streptococci revealed by wide whole-genome sequencing.

      Song, Lifu; Wang, Wei; Conrads, Georg; Rheinberg, Anke; Sztajer, Helena; Reck, Michael; Wagner-Döbler, Irene; Zeng, An-Ping; Institute of Bioprocess and Biosystems, Technical University Hamburg Harburg, Hamburg Harburg, Germany. (2013)
      Mutans streptococci are a group of bacteria significantly contributing to tooth decay. Their genetic variability is however still not well understood.