• Bacterioplankton Biogeography of the Atlantic Ocean: A Case Study of the Distance-Decay Relationship.

      Milici, Mathias; Tomasch, Jürgen; Wos-Oxley, Melissa L; Decelle, Johan; Jáuregui, Ruy; Wang, Hui; Deng, Zhi-Luo; Plumeier, Iris; Giebel, Helge-Ansgar; Badewien, Thomas H; et al. (2016)
      In order to determine the influence of geographical distance, depth, and Longhurstian province on bacterial community composition and compare it with the composition of photosynthetic micro-eukaryote communities, 382 samples from a depth-resolved latitudinal transect (51°S-47°N) from the epipelagic zone of the Atlantic ocean were analyzed by Illumina amplicon sequencing. In the upper 100 m of the ocean, community similarity decreased toward the equator for 6000 km, but subsequently increased again, reaching similarity values of 40-60% for samples that were separated by ~12,000 km, resulting in a U-shaped distance-decay curve. We conclude that adaptation to local conditions can override the linear distance-decay relationship in the upper epipelagial of the Atlantic Ocean which is apparently not restrained by barriers to dispersal, since the same taxa were shared between the most distant communities. The six Longhurstian provinces covered by the transect were comprised of distinct microbial communities; ~30% of variation in community composition could be explained by province. Bacterial communities belonging to the deeper layer of the epipelagic zone (140-200 m) lacked a distance-decay relationship altogether and showed little provincialism. Interestingly, those biogeographical patterns were consistently found for bacteria from three different size fractions of the plankton with different taxonomic composition, indicating conserved underlying mechanisms. Analysis of the chloroplast 16S rRNA gene sequences revealed that phytoplankton composition was strongly correlated with both free-living and particle associated bacterial community composition (R between 0.51 and 0.62, p < 0.002). The data show that biogeographical patterns commonly found in macroecology do not hold for marine bacterioplankton, most likely because dispersal and evolution occur at drastically different rates in bacteria.
    • The Binding Site of the V-ATPase Inhibitor Apicularen Is in the Vicinity of Those for Bafilomycin and Archazolid.

      Osteresch, Christin; Bender, Tobias; Grond, Stephanie; von Zezschwitz, Paultheo; Kunze, Brigitte; Jansen, Rolf; Huss, Markus; Wieczorek, Helmut; From the Fachbereich Biologie/Chemie, Abteilung Tierphysiologie, Universität Osnabrück, Barbarastrasse 11, 49069 Osnabrück. (2012-09-14)
      The investigation of V-ATPases as potential therapeutic drug targets and hence of their specific inhibitors is a promising approach in osteoporosis and cancer treatment because the occurrence of these diseases is interrelated to the function of the V-ATPase. Apicularen belongs to the novel inhibitor family of the benzolactone enamides, which are highly potent but feature the unique characteristic of not inhibiting V-ATPases from fungal sources. In this study we specify, for the first time, the binding site of apicularen within the membrane spanning V(O) complex. By photoaffinity labeling using derivatives of apicularen and of the plecomacrolides bafilomycin and concanamycin, each coupled to (14)C-labeled 4-(3-trifluoromethyldiazirin-3-yl)benzoic acid, we verified that apicularen binds at the interface of the V(O) subunits a and c. The binding site is in the vicinity to those of the plecomacrolides and of the archazolids, a third family of V-ATPase inhibitors. Expression of subunit c homologues from Homo sapiens and Manduca sexta, both species sensitive to benzolactone enamides, in a Saccharomyces cerevisiae strain lacking the corresponding intrinsic gene did not transfer this sensitivity to yeast. Therefore, the binding site of benzolactone enamides cannot be formed exclusively by subunit c. Apparently, subunit a substantially contributes to the binding of the benzolactone enamides.
    • The Biofilm Inhibitor Carolacton Enters Gram-Negative Cells: Studies Using a TolC-Deficient Strain of Escherichia coli.

      Donner, Jannik; Reck, Michael; Bunk, Boyke; Jarek, Michael; App, Constantin Benjamin; Meier-Kolthoff, Jan P; Overmann, Jörg; Müller, Rolf; Kirschning, Andreas; Wagner-Döbler, Irene; et al. (2017-11-01)
      The myxobacterial secondary metabolite carolacton inhibits growth of Streptococcus pneumoniae and kills biofilm cells of the caries- and endocarditis-associated pathogen Streptococcus mutans at nanomolar concentrations. Here, we studied the response to carolacton of an Escherichia coli strain that lacked the outer membrane protein TolC. Whole-genome sequencing of the laboratory E. coli strain TolC revealed the integration of an insertion element, IS5, at the tolC locus and a close phylogenetic relationship to the ancient E. coli K-12. We demonstrated via transcriptome sequencing (RNA-seq) and determination of MIC values that carolacton penetrates the phospholipid bilayer of the Gram-negative cell envelope and inhibits growth of E. coli TolC at similar concentrations as for streptococci. This inhibition is completely lost for a C-9 (R) epimer of carolacton, a derivative with an inverted stereocenter at carbon atom 9 [(S) → (R)] as the sole difference from the native molecule, which is also inactive in S. pneumoniae and S. mutans, suggesting a specific interaction of native carolacton with a conserved cellular target present in bacterial phyla as distantly related as Firmicutes and Proteobacteria. The efflux pump inhibitor (EPI) phenylalanine arginine β-naphthylamide (PAβN), which specifically inhibits AcrAB-TolC, renders E. coli susceptible to carolacton. Our data indicate that carolacton has potential for use in antimicrobial chemotherapy against Gram-negative bacteria, as a single drug or in combination with EPIs. Strain E. coli TolC has been deposited at the DSMZ; together with the associated RNA-seq data and MIC values, it can be used as a reference during future screenings for novel bioactive compounds. IMPORTANCE The emergence of pathogens resistant against most or all of the antibiotics currently used in human therapy is a global threat, and therefore the search for antimicrobials with novel targets and modes of action is of utmost importance. The myxobacterial secondary metabolite carolacton had previously been shown to inhibit biofilm formation and growth of streptococci. Here, we investigated if carolacton could act against Gram-negative bacteria, which are difficult targets because of their double-layered cytoplasmic envelope. We found that the model organism Escherichia coli is susceptible to carolacton, similar to the Gram-positive Streptococcus pneumoniae, if its multidrug efflux system AcrAB-TolC is either inactivated genetically, by disruption of the tolC gene, or physiologically by coadministering an efflux pump inhibitor. A carolacton epimer that has a different steric configuration at carbon atom 9 is completely inactive, suggesting that carolacton may interact with the same molecular target in both Gram-positive and Gram-negative bacteria.
    • The biofilm inhibitor Carolacton inhibits planktonic growth of virulent pneumococci via a conserved target.

      Donner, Jannik; Reck, Michael; Bergmann, Simone; Kirschning, Andreas; Müller, Rolf; Wagner-Döbler, Irene; Helmholtz Centre for infection research, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2016)
      New antibacterial compounds, preferentially exploiting novel cellular targets, are urgently needed to fight the increasing resistance of pathogens against conventional antibiotics. Here we demonstrate that Carolacton, a myxobacterial secondary metabolite previously shown to damage Streptococcus mutans biofilms, inhibits planktonic growth of Streptococcus pneumoniae TIGR4 and multidrug-resistant clinical isolates of serotype 19A at nanomolar concentrations. A Carolacton diastereomer is inactive in both streptococci, indicating a highly specific interaction with a conserved cellular target. S. mutans requires the eukaryotic-like serine/threonine protein kinase PknB and the cysteine metabolism regulator CysR for susceptibility to Carolacton, whereas their homologues are not needed in S. pneumoniae, suggesting a specific function for S. mutans biofilms only. A bactericidal effect of Carolacton was observed for S. pneumoniae TIGR4, with a reduction of cell numbers by 3 log units. The clinical pneumonia isolate Sp49 showed immediate growth arrest and cell lysis, suggesting a bacteriolytic effect of Carolacton. Carolacton treatment caused a reduction in membrane potential, but not membrane integrity, and transcriptome analysis revealed compensatory reactions of the cell. Our data show that Carolacton might have potential for treating pneumococcal infections.
    • Biofilm transplantation in the deep sea.

      Wagner-Döbler, Irene; Helmholtz Centre for infection research, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2016-05)
      A gold rush is currently going on in microbial ecology, which is powered by the possibility to determine the full complexity of microbial communities through next-generation sequencing. Accordingly, enormous efforts are underway to describe microbiomes worldwide, in humans, animals, plants, soil, air and the ocean. While much can be learned from these studies, only experiments will finally unravel mechanisms. One of the key questions is how a microbial community is assembled from a pool of bacteria in the environment, and how it responds to change - be it the increase in CO2 concentration in the ocean, or antibiotic treatment of the gut microbiome. The study by Zhang et al. () in this issue is one of the very few that approaches this problem experimentally in the natural environment. The authors selected a habitat which is both extremely interesting and difficult to access. They studied the Thuwal Seep in the Red Sea at 850 m depth and used a remotely operated vehicle (ROV) to place a steel frame carrying substrata for biofilm growth into the brine pool and into the adjacent normal bottom water (NBW). Biofilms were allowed to develop for 3 days, and then those that had been growing in the brine pool were transported to normal bottom water and stayed there for another 3 days, and vice versa. The 'switched' biofilms were then compared with their source communities by metagenome sequencing. Strikingly, both 'switched' biofilms were now dominated by the same two species. These species were able to cope with conditions in both source ecosystems, as shown by assembly of their genomes and detection of expression of key genes. The biofilms had adapted to environmental change, rather than to brine pools or NBW. The study shows both the resilience and adaptability of biofilm communities and has implications for microbial ecology in general and even for therapeutic approaches such as transplantation of faecal microbiomes.
    • Biogeography and phylogenetic diversity of a cluster of exclusively marine myxobacteria.

      Brinkhoff, Thorsten; Fischer, Doreen; Vollmers, John; Voget, Sonja; Beardsley, Christine; Thole, Sebastian; Mussmann, Marc; Kunze, Brigitte; Wagner-Döbler, Irene; Daniel, Rolf; et al. (2012-06)
      Myxobacteria are common in terrestrial habitats and well known for their formation of fruiting bodies and production of secondary metabolites. We studied a cluster of myxobacteria consisting only of sequences of marine origin (marine myxobacteria cluster, MMC) in sediments of the North Sea. Using a specific PCR, MMC sequences were detected in North Sea sediments down to 2.2 m depth, but not in the limnetic section of the Weser estuary and other freshwater habitats. In the water column, this cluster was only detected on aggregates up to a few meters above the sediment surface, but never in the fraction of free-living bacteria. A quantitative real-time PCR approach revealed that the MMC constituted up to 13% of total bacterial 16S rRNA genes in surface sediments of the North Sea. In a global survey, including sediments from the Mediterranean Sea, the Atlantic, Pacific and Indian Ocean and various climatic regions, the MMC was detected in most samples and to a water depth of 4300 m. Two fosmids of a library from sediment of the southern North Sea containing 16S rRNA genes affiliated with the MMC were sequenced. Both fosmids have a single unlinked 16S rRNA gene and no complete rRNA operon as found in most bacteria. No synteny to other myxobacterial genomes was found. The highest numbers of orthologues for both fosmids were assigned to Sorangium cellulosum and Haliangium ochraceum. Our results show that the MMC is an important and widely distributed but largely unknown component of marine sediment-associated bacterial communities.
    • Biological activity of volatiles from marine and terrestrial bacteria.

      Schulz, Stefan; Dickschat, Jeroen S; Kunze, Brigitte; Wagner-Döbler, Irene; Diestel, Randi; Sasse, Florenz; Institute of Organic Chemistry, University of Braunschweig-Institute of Technology, Hagenring 30, Braunschweig, Germany. Stefan.Schulz@tu-bs.de (2010)
      The antiproliferative activity of 52 volatile compounds released from bacteria was investigated in agar diffusion assays against medically important microorganisms and mouse fibroblasts. Furthermore, the activity of these compounds to interfere with the quorum-sensing-systems was tested with two different reporter strains. While some of the compounds specific to certain bacteria showed some activity in the antiproliferative assay, the compounds common to many bacteria were mostly inactive. In contrast, some of these compounds were active in the quorum-sensing-tests. γ-Lactones showed a broad reactivity, while pyrazines seem to have only low intrinsic activity. A general discussion on the ecological importance of these findings is given.
    • Carolacton Treatment Causes Delocalization of the Cell Division Proteins PknB and DivIVa in Streptococcus mutans in vivo.

      Reck, Michael; Wagner-Döbler, Irene; Helmholtzzentrum für Infektionsforschung, 38124 Braunschweig (2016)
      The small inhibitory molecule Carolacton has been shown to cause chain formation and bulging in Streptococci, suggesting a defect in cell division, but it is not known how cell division is impaired on a molecular level. Fluorescent fusion proteins have successfully been applied to visualize protein localization and dynamics in vivo and have revolutionized our understanding of cell wall growth, cell division, chromosome replication and segregation. However, in Streptococci the required vectors are largely lacking. We constructed vectors for chromosomal integration and inducible expression of fluorescent fusion proteins based on GFP+ in S. mutans. Their applicability was verified using four proteins with known localization in the cell. We then determined the effect of Carolacton on the subcellular localization of GFP+ fusions of the cell division protein DivIVa and the serine-threonine protein kinase PknB. Carolacton caused a significant delocalization of these proteins from midcell, in accordance with a previous study demonstrating the Carolacton insensitive phenotype of a pknB deletion strain. Carolacton treated cells displayed an elongated phenotype, increased septum formation and a severe defect in daughter cell separation. GFP+ fusions of two hypothetical proteins (SMU_503 and SMU_609), that had previously been shown to be the most strongly upregulated genes after Carolacton treatment, were found to be localized at the septum in midcell, indicating their role in cell division. These findings highlight the importance of PknB as a key regulator of cell division in streptococci and indicate a profound impact of Carolacton on the coordination between peripheral and septal cell wall growth. The established vector system represents a novel tool to study essential steps of cellular metabolism.
    • Characterization of mleR, a positive regulator of malolactic fermentation and part of the acid tolerance response in Streptococcus mutans

      Lemme, André; Sztajer, Helena; Wagner-Döbler, Irene (2010-02-23)
      Abstract Background One of the key virulence determinants of Streptococcus mutans, the primary etiological agent of human dental caries, is its strong acid tolerance. The acid tolerance response (ATR) of S. mutans comprises several mechanisms that are induced at low pH and allow the cells to quickly adapt to a lethal pH environment. Malolactic fermentation (MLF) converts L-malate to L-lactate and carbon dioxide and furthermore regenerates ATP, which is used to translocate protons across the membrane. Thus, MLF may contribute to the aciduricity of S. mutans but has not been associated with the ATR so far. Results Here we show that the malolactic fermentation (mle) genes are under the control of acid inducible promoters which are induced within the first 30 minutes upon acid shock in the absence of malate. Thus, MLF is part of the early acid tolerance response of S. mutans. However, acidic conditions, the presence of the regulator MleR and L-malate were required to achieve maximal expression of all genes, including mleR itself. Deletion of mleR resulted in a decreased capacity to carry out MLF and impaired survival at lethal pH in the presence of L-malate. Gel retardation assays indicated the presence of multiple binding sites for MleR. Differences in the retardation patterns occurred in the presence of L-malate, thus demonstrating its role as co-inducer for transcriptional regulation. Conclusion This study shows that the MLF gene cluster is part of the early acid tolerance response in S. mutans and is induced by both low pH and L-malate.
    • Characterization of mleR, a positive regulator of malolactic fermentation and part of the acid tolerance response in Streptococcus mutans.

      Lemme, André; Sztajer, Helena; Wagner-Döbler, Irene; Helmholtz-Centre for Infection Research, Division of Cell Biology, Braunschweig, Germany. ale05@helmholtz-hzi.de (2010)
      BACKGROUND: One of the key virulence determinants of Streptococcus mutans, the primary etiological agent of human dental caries, is its strong acid tolerance. The acid tolerance response (ATR) of S. mutans comprises several mechanisms that are induced at low pH and allow the cells to quickly adapt to a lethal pH environment. Malolactic fermentation (MLF) converts L-malate to L-lactate and carbon dioxide and furthermore regenerates ATP, which is used to translocate protons across the membrane. Thus, MLF may contribute to the aciduricity of S. mutans but has not been associated with the ATR so far. RESULTS: Here we show that the malolactic fermentation (mle) genes are under the control of acid inducible promoters which are induced within the first 30 minutes upon acid shock in the absence of malate. Thus, MLF is part of the early acid tolerance response of S. mutans. However, acidic conditions, the presence of the regulator MleR and L-malate were required to achieve maximal expression of all genes, including mleR itself. Deletion of mleR resulted in a decreased capacity to carry out MLF and impaired survival at lethal pH in the presence of L-malate. Gel retardation assays indicated the presence of multiple binding sites for MleR. Differences in the retardation patterns occurred in the presence of L-malate, thus demonstrating its role as co-inducer for transcriptional regulation. CONCLUSION: This study shows that the MLF gene cluster is part of the early acid tolerance response in S. mutans and is induced by both low pH and L-malate.
    • Co-occurrence Analysis of Microbial Taxa in the Atlantic Ocean Reveals High Connectivity in the Free-Living Bacterioplankton.

      Milici, Mathias; Deng, Zhi-Luo; Tomasch, Jürgen; Decelle, Johan; Wos-Oxley, Melissa L; Wang, Hui; Jáuregui, Ruy; Plumeier, Iris; Giebel, Helge-Ansgar; Badewien, Thomas H; et al. (2016)
      We determined the taxonomic composition of the bacterioplankton of the epipelagic zone of the Atlantic Ocean along a latitudinal transect (51°S-47°N) using Illumina sequencing of the V5-V6 region of the 16S rRNA gene and inferred co-occurrence networks. Bacterioplankon community composition was distinct for Longhurstian provinces and water depth. Free-living microbial communities (between 0.22 and 3 μm) were dominated by highly abundant and ubiquitous taxa with streamlined genomes (e.g., SAR11, SAR86, OM1, Prochlorococcus) and could clearly be separated from particle-associated communities which were dominated by Bacteroidetes, Planktomycetes, Verrucomicrobia, and Roseobacters. From a total of 369 different communities we then inferred co-occurrence networks for each size fraction and depth layer of the plankton between bacteria and between bacteria and phototrophic micro-eukaryotes. The inferred networks showed a reduction of edges in the deepest layer of the photic zone. Networks comprised of free-living bacteria had a larger amount of connections per OTU when compared to the particle associated communities throughout the water column. Negative correlations accounted for roughly one third of the total edges in the free-living communities at all depths, while they decreased with depth in the particle associated communities where they amounted for roughly 10% of the total in the last part of the epipelagic zone. Co-occurrence networks of bacteria with phototrophic micro-eukaryotes were not taxon-specific, and dominated by mutual exclusion (~60%). The data show a high degree of specialization to micro-environments in the water column and highlight the importance of interdependencies particularly between free-living bacteria in the upper layers of the epipelagic zone.
    • Comparative proteomic analysis of high cell density cultivations with two recombinant Bacillus megaterium strains for the production of a heterologous dextransucrase.

      Wang, Wei; Hollmann, Rajan; Deckwer, Wolf-Dieter (2006)
      High cell density cultivations were performed under identical conditions for two Bacillus megaterium strains (MS941 and WH320), both carrying a heterologous dextransucrase (dsrS) gene under the control of the xylA promoter. At characteristic points of the cultivations (end of batch, initial feeding, before and after induction) the proteome was analyzed based on two dimensional gel electrophoresis and mass spectrometric protein identification using the protein database "bmegMEC.v2" recently made available.High expression but no secretion of DsrS was found for the chemical mutant WH320 whereas for MS 941, a defined protease deficient mutant of the same parent strain (DSM319), not even expression of DsrS could be detected. The proteomic analysis resulted in the identification of proteins involved in different cellular pathways such as in central carbon and overflow metabolism, in protein synthesis, protein secretion and degradation, in cell wall metabolism, in cell division and sporulation, in membrane transport and in stress responses.The two strains exhibited considerable variations in expression levels of specific proteins during the different phases of the cultivation process, whereas induction of DsrS production had, in general, little effect. The largely differing behaviour of the two strains with regard to DsrS expression can be attributed, at least in part, to changes observed in the proteome which predominantly concern biosynthetic enzymes and proteins belonging to the membrane translocation system, which were strongly down-regulated at high cell densities in MS941 compared with WH320. At the same time a cell envelope-associated quality control protease and two peptidoglycan-binding proteins related to cell wall turnover were strongly expressed in MS941 but not found in WH320. However, to further explain the very different physiological responses of the two strains to the same cultivation conditions, it is necessary to identify the mutated genes in WH320 in addition to the known lacZ.In view of the results of this proteomic study it seems that at high cell density conditions and hence low growth rates MS941, in contrast to WH320, does not maintain a vegetative growth which is essential for the expression of the foreign dsrS gene by using the xylA promoter. It is conceivable that applications of a promoter which is highly active under nutrient-limited cultivation conditions is necessary, at least for MS941, for the overexpression of recombinant genes in such B. megaterium fed-batch cultivation process. However to obtain a heterologous protein in secreted and properly folded form stills remains a big challenge.
    • Comparing the cariogenic species Streptococcus sobrinus and S. mutans on whole genome level.

      Conrads, Georg; de Soet, Johannes J; Song, Lifu; Henne, Karsten; Sztajer, Helena; Wagner-Döbler, Irene; Zeng, An-Ping (2014)
      Two closely related species of mutans streptococci, namely Streptococcus mutans and Streptococcus sobrinus, are associated with dental caries in humans. Their acidogenic and aciduric capacity is directly associated with the cariogenic potential of these bacteria. To survive acidic and temporarily harsh conditions in the human oral cavity with hundreds of other microbial co-colonizers as competitors, both species have developed numerous mechanisms for adaptation.
    • Complete Genome Sequences of Three Multidrug-Resistant Clinical Isolates of Streptococcus pneumoniae Serotype 19A with Different Susceptibilities to the Myxobacterial Metabolite Carolacton.

      Donner, Jannik; Bunk, Boyke; Schober, Isabel; Spröer, Cathrin; Bergmann, Simone; Jarek, Michael; Overmann, Jörg; Wagner-Döbler, Irene; Helmholtz Centre for infection research, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2017-02-16)
      The full-genome sequences of three drug- and multidrug-resistant Streptococcus pneumoniae clinical isolates of serotype 19A were determined by PacBio single-molecule real-time sequencing, in combination with Illumina MiSeq sequencing. A comparison to the genomes of other pneumococci indicates a high nucleotide sequence identity to strains Hungary19A-6 and TCH8431/19A.
    • Complete sequence of the suicide vector pJP5603.

      Riedel, Thomas; Rohlfs, Meike; Buchholz, Ina; Wagner-Döbler, Irene; Reck, Michael; Helmholtz-Centre for Infection Research, Group Microbial Communication, Braunschweig, Germany. tri07@helmholtz-hzi.de (2013-01)
      We have sequenced the complete R6K-based and mobilizable suicide vector pJP5603. For the replication of the vector a trans supply of the pir-encoded π protein of plasmid R6K is essential. The 3.126 kb plasmid encodes a kanamycin resistance cassette for selection and contains a lacZ-α-system that allows a blue-white selection of cloned fragments.
    • Construction and verification of the transcriptional regulatory response network of Streptococcus mutans upon treatment with the biofilm inhibitor carolacton.

      Sudhakar, Padhmanand; Reck, Michael; Wang, Wei; He, Feng Q; Dobler, Irene W; Zeng, An-Ping (2014)
      Carolacton is a newly identified secondary metabolite causing altered cell morphology and death of Streptococcus mutans biofilm cells. To unravel key regulators mediating these effects, the transcriptional regulatory response network of S. mutans biofilms upon carolacton treatment was constructed and analyzed. A systems biological approach integrating time-resolved transcriptomic data, reverse engineering, transcription factor binding sites, and experimental validation was carried out.
    • Cross-feeding and interkingdom communication in dual-species biofilms of Streptococcus mutans and Candida albicans.

      Sztajer, Helena; Szafranski, Szymon P; Tomasch, Jürgen; Reck, Michael; Nimtz, Manfred; Rohde, Manfred; Wagner-Döbler, Irene; Helmholtz Centre for infection research, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2014-11)
      Polymicrobial biofilms are of large medical importance, but relatively little is known about the role of interspecies interactions for their physiology and virulence. Here, we studied two human pathogens co-occuring in the oral cavity, the opportunistic fungus Candida albicans and the caries-promoting bacterium Streptococcus mutans. Dual-species biofilms reached higher biomass and cell numbers than mono-species biofilms, and the production of extracellular polymeric substances (EPSs) by S. mutans was strongly suppressed, which was confirmed by scanning electron microscopy, gas chromatography-mass spectrometry and transcriptome analysis. To detect interkingdom communication, C. albicans was co-cultivated with a strain of S. mutans carrying a transcriptional fusion between a green fluorescent protein-encoding gene and the promoter for sigX, the alternative sigma factor of S. mutans, which is induced by quorum sensing signals. Strong induction of sigX was observed in dual-species biofilms, but not in single-species biofilms. Conditioned media from mixed biofilms but not from C. albicans or S. mutans cultivated alone activated sigX in the reporter strain. Deletion of comS encoding the synthesis of the sigX-inducing peptide precursor abolished this activity, whereas deletion of comC encoding the competence-stimulating peptide precursor had no effect. Transcriptome analysis of S. mutans confirmed induction of comS, sigX, bacteriocins and the downstream late competence genes, including fratricins, in dual-species biofilms. We show here for the first time the stimulation of the complete quorum sensing system of S. mutans by a species from another kingdom, namely the fungus C. albicans, resulting in fundamentally changed virulence properties of the caries pathogen.
    • The CtrA phosphorelay integrates differentiation and communication in the marine alphaproteobacterium Dinoroseobacter shibae.

      Wang, Hui; Ziesche, Lisa; Frank, Oliver; Michael, Victoria; Martin, Madeleine; Petersen, Jörn; Schulz, Stefan; Wagner-Döbler, Irene; Tomasch, Jürgen; Helmholtz Centre for infection research, Inhoffenstr. 7, D-38124 Braunschweig, Germany. (2014)
      Dinoroseobacter shibae, a member of the Roseobacter clade abundant in marine environments, maintains morphological heterogeneity throughout growth, with small cells dividing by binary fission and large cells dividing by budding from one or both cell poles. This morphological heterogeneity is lost if the quorum sensing (QS) system is silenced, concurrent with a decreased expression of the CtrA phosphorelay, a regulatory system conserved in Alphaproteobacteria and the master regulator of the Caulobacter crescentus cell cycle. It consists of the sensor histidine kinase CckA, the phosphotransferase ChpT and the transcriptional regulator CtrA. Here we tested if the QS induced differentiation of D. shibae is mediated by the CtrA phosphorelay.
    • Damage of Streptococcus mutans biofilms by carolacton, a secondary metabolite from the myxobacterium Sorangium cellulosum

      Kunze, Brigitte; Reck, Michael; Dötsch, Andreas; Lemme, André; Schummer, Dietmar; Irschik, Herbert; Steinmetz, Heinrich; Wagner-Döbler, Irene (2010-07-26)
      Abstract Background Streptococcus mutans is a major pathogen in human dental caries. One of its important virulence properties is the ability to form biofilms (dental plaque) on tooth surfaces. Eradication of such biofilms is extremely difficult. We therefore screened a library of secondary metabolites from myxobacteria for their ability to damage biofilms of S. mutans. Results Here we show that carolacton, a secondary metabolite isolated from Sorangium cellulosum, has high antibacterial activity against biofilms of S. mutans. Planktonic growth of bacteria was only slightly impaired and no acute cytotoxicity against mouse fibroblasts could be observed. Carolacton caused death of S. mutans biofilm cells, elongation of cell chains, and changes in cell morphology. At a concentration of 10 nM carolacton, biofilm damage was already at 35% under anaerobic conditions. A knock-out mutant for comD, encoding a histidine kinase specific for the competence stimulating peptide (CSP), was slightly less sensitive to carolacton than the wildtype. Expression of the competence related alternate sigma factor ComX was strongly reduced by carolacton, as determined by a pcomX luciferase reporter strain. Conclusions Carolacton possibly interferes with the density dependent signalling systems in S. mutans and may represent a novel approach for the prevention of dental caries.
    • Deep sequencing of biofilm microbiomes on dental composite materials.

      Conrads, Georg; Wendt, Laura Katharina; Hetrodt, Franziska; Deng, Zhi-Luo; Pieper, Dietmar; Abdelbary, Mohamed M H; Barg, Andree; Wagner-Döbler, Irene; Apel, Christian (2019-01-01)
      Background: The microbiome on dental composites has not been studied in detail before. It has not been conclusively clarified whether restorative materials influence the oral microbiome. Methods: We used Illumina Miseq next-generation sequencing of the 16S V1-V2 region to compare the colonisation patterns of bovine enamel (BE) and the composite materials Grandio Flow (GF) and Grandio Blocs (GB) after 48 h in vivo in 14 volunteers. Applying a new method to maintain the oral microbiome ex vivo for 48 h also, we compared the microbiome on GF alone and with the new antimicrobial substance carolacton (GF+C). Results: All in vitro biofilm communities showed a higher diversity and richness than those grown in vivo but the very different atmospheric conditions must be considered. Contrary to expectations, there were only a few significant differences between BE and the composite materials GB and GF either in vivo or in vitro: Oribacterium, Peptostreptococcaceae [XI][G-1] and Streptococcus mutans were more prevalent and Megasphaera, Prevotella oulorum, Veillonella atypica, V. parvula, Gemella morbillorum, and Fusobacterium periodonticum were less prevalent on BE than on composites. In vivo, such preferences were only significant for Granulicatella adiacens (more prevalent on BE) and Fusobacterium nucleatum subsp. animalis (more prevalent on composites). On DNA sequence level, there were no significant differences between the biofilm communities on GF and GF+C. Conclusion: We found that the oral microbiome showed an increased richness when grown on various composites compared to BE in vitro, but otherwise changed only slightly independent of the in vivo or in vitro condition. Our new ex vivo biofilm model might be useful for pre-clinical testing of preventive strategies.