• Characterization of Novel Factors Involved in Swimming and Swarming Motility in Salmonella enterica Serovar Typhimurium.

      Deditius, Julia Andrea; Felgner, Sebastian; Spöring, Imke; Kühne, Caroline; Frahm, Michael; Rohde, Manfred; Weiß, Siegfried; Erhardt, Marc; Helmholtz Centre for infection research, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2015)
      Salmonella enterica utilizes flagellar motility to swim through liquid environments and on surfaces. The biosynthesis of the flagellum is regulated on various levels, including transcriptional and posttranscriptional mechanisms. Here, we investigated the motility phenotype of 24 selected single gene deletions that were previously described to display swimming and swarming motility effects. Mutations in flgE, fliH, ydiV, rfaG, yjcC, STM1267 and STM3363 showed an altered motility phenotype. Deletions of flgE and fliH displayed a non-motile phenotype in both swimming and swarming motility assays as expected. The deletions of STM1267, STM3363, ydiV, rfaG and yjcC were further analyzed in detail for flagellar and fimbrial gene expression and filament formation. A ΔydiV mutant showed increased swimming motility, but a decrease in swarming motility, which coincided with derepression of curli fimbriae. A deletion of yjcC, encoding for an EAL domain-containing protein, increased swimming motility independent on flagellar gene expression. A ΔSTM1267 mutant displayed a hypermotile phenotype on swarm agar plates and was found to have increased numbers of flagella. In contrast, a knockout of STM3363 did also display an increase in swarming motility, but did not alter flagella numbers. Finally, a deletion of the LPS biosynthesis-related protein RfaG reduced swimming and swarming motility, associated with a decrease in transcription from flagellar class II and class III promoters and a lack of flagellar filaments.
    • Engineered Salmonella enterica serovar Typhimurium overcomes limitations of anti-bacterial immunity in bacteria-mediated tumor therapy

      Felgner, Sebastian; Kocijancic, Dino; Frahm, Michael; Heise, Ulrike; Rohde, Manfred; Zimmermann, Kurt; Falk, Christine; Erhardt, Marc; Weiss, Siegfried; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr.7, 38124 Braunschweig, Germany.; et al. (2017-09-29)
    • Optimizing Salmonella enterica serovar Typhimurium for bacteria-mediated tumor therapy.

      Felgner, Sebastian; Kocijancic, Dino; Frahm, Michael; Curtiss, Roy; Erhardt, Marc; Weiss, Siegfried; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2016)
      Bacteria-mediated tumor therapy using Salmonella enterica serovar Typhimurium is a therapeutic option with great potential. Numerous studies explored the potential of Salmonella Typhimurium for therapeutic applications, however reconciling safety with vectorial efficacy remains a major issue. Recently we have described a conditionally attenuated Salmonella vector that is based on genetic lipopolysaccharide modification. This vector combines strong attenuation with appropriate anti-tumor properties by targeting various cancerous tissues in vivo. Therefore, it was promoted as an anti-tumor agent. In this addendum, we summarize these findings and demonstrate additional optimization steps that may further improve the therapeutic efficacy of our vector strain.
    • Regulation of Flagellum Biosynthesis in Response to Cell Envelope Stress in Serovar Typhimurium.

      Spöring, Imke; Felgner, Sebastian; Preuße, Matthias; Eckweiler, Denitsa; Rohde, M; Häussler, Susanne; Weiss, Siegfried; Erhardt, Marc (2018-05-01)
      Flagellum-driven motility of serovar Typhimurium facilitates host colonization. However, the large extracellular flagellum is also a prime target for the immune system. As consequence, expression of flagella is bistable within a population of , resulting in flagellated and nonflagellated subpopulations. This allows the bacteria to maximize fitness in hostile environments. The degenerate EAL domain protein RflP (formerly YdiV) is responsible for the bistable expression of flagella by directing the flagellar master regulatory complex FlhDC with respect to proteolytic degradation. Information concerning the environmental cues controlling expression of and thus about the bistable flagellar biosynthesis remains ambiguous. Here, we demonstrated that RflP responds to cell envelope stress and alterations of outer membrane integrity. Lipopolysaccharide (LPS) truncation mutants of Typhimurium exhibited increasing motility defects due to downregulation of flagellar gene expression. Transposon mutagenesis and genetic profiling revealed that σ (RpoE) and Rcs phosphorelay-dependent cell envelope stress response systems sense modifications of the lipopolysaccaride, low pH, and activity of the complement system. This subsequently results in activation of RflP expression and degradation of FlhDC via ClpXP. We speculate that the presence of diverse hostile environments inside the host might result in cell envelope damage and would thus trigger the repression of resource-costly and immunogenic flagellum biosynthesis via activation of the cell envelope stress response. Pathogenic bacteria such as Typhimurium sense and adapt to a multitude of changing and stressful environments during host infection. At the initial stage of gastrointestinal colonization, uses flagellum-mediated motility to reach preferred sites of infection. However, the flagellum also constitutes a prime target for the host's immune response. Accordingly, the pathogen needs to determine the spatiotemporal stage of infection and control flagellar biosynthesis in a robust manner. We found that uses signals from cell envelope stress-sensing systems to turn off production of flagella. We speculate that downregulation of flagellum synthesis after cell envelope damage in hostile environments aids survival of during late stages of infection and provides a means to escape recognition by the immune system.
    • Tumour-targeting bacteria-based cancer therapies for increased specificity and improved outcome.

      Felgner, Sebastian; Pawar, Vinay; Kocijancic, Dino; Erhardt, Marc; Weiss, Siegfried; Helmholtz Centre for infection research, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2017-08-03)