• Biophysical Screening of a Focused Library for the Discovery of CYP121 Inhibitors as Novel Antimycobacterials.

      Brengel, Christian; Thomann, Andreas; Schifrin, Alexander; Allegretta, Giuseppe; Kamal, Ahmed A M; Haupenthal, Jörg; Schnorr, Isabell; Cho, Sang Hyun; Franzblau, Scott G; Empting, Martin; et al. (2017-10-09)
      The development of novel antimycobacterial agents against Mycobacterium tuberculosis (Mtb) is urgently required due to the appearance of multidrug resistance (MDR) combined with complicated long-term treatment. CYP121 was shown to be a promising novel target for inhibition of mycobacterial growth. In this study, we describe the rational discovery of new CYP121 inhibitors by a systematic screening based on biophysical and microbiological methods. The best hits originating from only one structural class gave initial information about molecular motifs required for binding and activity. The initial screening procedure was followed by mode-of-action studies and further biological characterizations. The results demonstrate superior antimycobacterial efficacy and a decreased toxicity profile of our frontrunner compound relative to the reference compound econazole. Due to its low molecular weight, promising biological profile, and physicochemical properties, this compound is an excellent starting point for further rational optimization.
    • In-depth Profiling of MvfR-Regulated Small Molecules in Pseudomonas aeruginosa after Quorum Sensing Inhibitor Treatment.

      Allegretta, Giuseppe; Maurer, Christine K; Eberhard, Jens; Maura, Damien; Hartmann, Rolf W; Rahme, Laurence; Empting, Martin; Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS),Saarland 9 University, 66123 Saarbrücken, Germany. (2017)
      Pseudomonas aeruginosa is a Gram-negative bacterium, which causes opportunistic infections in immuno-compromised individuals. Due to its multiple resistances toward antibiotics, the development of new drugs is required. Interfering with Quorum Sensing (QS), a cell-to-cell communication system, has shown to be highly efficient in reducing P. aeruginosa pathogenicity. One of its QS systems employs Pseudomonas Quinolone Signal (PQS) and 4-hydroxy-2-heptylquinoline (HHQ) as signal molecules. Both activate the transcriptional regulator MvfR (Multiple Virulence Factor Regulator), also called PqsR, driving the production of QS molecules as well as toxins and biofilm formation. The aim of this work was to elucidate the effects of QS inhibitors (QSIs), such as MvfR antagonists and PqsBC inhibitors, on the biosynthesis of the MvfR-regulated small molecules 2'-aminoacetophenone (2-AA), dihydroxyquinoline (DHQ), HHQ, PQS, and 4-hydroxy-2-heptylquinoline-N-oxide (HQNO). The employed synthetic MvfR antagonist fully inhibited pqs small molecule formation showing expected sigmoidal dose-response curves for 2-AA, HQNO, HHQ and PQS. Surprisingly, DHQ levels were enhanced at lower antagonist concentrations followed by a full suppression at higher QSI amounts. This particular bi-phasic profile hinted at the accumulation of a biosynthetic intermediate resulting in the observed overproduction of the shunt product DHQ. Additionally, investigations on PqsBC inhibitors showed a reduction of MvfR natural ligands, while increased 2-AA, DHQ and HQNO levels compared to the untreated cells were detected. Moreover, PqsBC inhibitors did not show any significant effect in PA14 pqsC mutant demonstrating their target selectivity. As 2-AA is important for antibacterial tolerance, the QSIs were evaluated in their capability to attenuate persistence. Indeed, persister cells were reduced along with 2-AA inhibition resulting from MvfR antagonism, but not from PqsBC inhibition. In conclusion, antagonizing MvfR using a dosage capable of fully suppressing this QS system will lead to a favorable therapeutic outcome as DHQ overproduction is avoided and bacterial persistence is reduced.
    • Mild and Catalyst-Free Microwave-Assisted Synthesis of 4,6-Disubstituted 2-Methylthiopyrimidines – Exploiting Tetrazole as an Efficient Leaving Group

      Thomann, Andreas; Eberhard, Jens; Allegretta, Giuseppe; Empting, Martin; Hartmann, Rolf; Helmholtz Institute for Pharmaceutical Research Saarland (HIPS);Saarland University, Building A4.1, 66123 Saarbruecken, Germany.; Helmholtz-Institute for Pharmaceutical Research Saarland, Saarland University; Helmholtz-Institute for Pharmaceutical Research Saarland, Saarland University; Helmholtz-Institute for Pharmaceutical Research Saarland, Saarland University; Helmholtz-Institute for Pharmaceutical Research Saarland, Saarland University; et al. (2015-10-21)
    • Structure-functionality relationship and pharmacological profiles of Pseudomonas aeruginosa alkylquinolone quorum sensing modulators.

      Kamal, Ahmed A M; Petrera, Lucia; Eberhard, Jens; Hartmann, Rolf W.; Helmholtz-Institu für pharmazeutische Forschung Saarland,, Universitätscampus E8.1, 66123 Saarbrücken, Germany. (2017-05-31)
      An important paradigm in anti-infective research is the antivirulence concept. Pathoblockers are compounds which disarm bacteria of their arsenal of virulence factors. PqsR is a transcriptional regulator controlling the production of such factors in Pseudomonas aeruginosa, most prominently pyocyanin. In this work, a series of tool compounds based on the structure of the natural ligand 2-heptyl-4-quinolone (HHQ) were used for probing the structure-functionality relationship. Four different profiles are identified namely agonists, antagonists, inverse agonists and biphasic modulators. Molecular docking studies revealed that each class of the PqsR modulators showed distinctive interactions in the PqsR binding domain. It was found that the substituents in position 3 of the quinolone core act as a switch between the different profiles, according to their ability to donate or accept a hydrogen bond, or form a hydrophobic interaction. Finally, it was shown that only inverse agonists were able to strongly inhibit pyocyanin production.