• Design and Synthesis of Bioisosteres of Acylhydrazones as Stable Inhibitors of the Aspartic Protease Endothiapepsin.

      Jumde, Varsha R; Mondal, Milon; Gierse, Robin M; Unver, M Yagiz; Magari, Francesca; van Lier, Roos C W; Heine, Andreas; Klebe, Gerhard; Hirsch, Anna K H; HIPS, Helmholtz-Institut für Pharmazeutische Forschung Saarland, Universitätscampus E8.1 66123 Saarbrücken, Germany. (Elsevier, 2018-11-06)
      Acylhydrazone-based dynamic combinatorial chemistry (DCC) is a powerful strategy for the rapid identification of novel hits. Even though acylhydrazones are important structural motifs in medicinal chemistry, their further progression in development may be hampered by major instability and potential toxicity under physiological conditions. It is therefore of paramount importance to identify stable replacements for acylhydrazone linkers. Herein, we present the first report on the design and synthesis of stable bioisosteres of acylhydrazone-based inhibitors of the aspartic protease endothiapepsin as a follow-up to a DCC study. The most successful bioisostere is equipotent, bears an amide linker, and we confirmed its binding mode by X-ray crystallography. Having some validated bioisosteres of acylhydrazones readily available might accelerate hit-to-lead optimization in future acylhydrazone-based DCC projects.
    • Exploration of ligand binding modes towards the identification of compounds targeting HuR: a combined STD-NMR and Molecular Modelling approach.

      Vasile, Francesca; Della Volpe, Serena; Ambrosio, Francesca Alessandra; Costa, Giosuè; Unver, M Yagiz; Zucal, Chiara; Rossi, Daniela; Martino, Emanuela; Provenzani, Alessandro; Hirsch, Anna K H; et al. (2018-09-13)
      Post-transcriptional processes have been recognised as pivotal in the control of gene expression, and impairments in RNA processing are reported in several pathologies (i.e., cancer and neurodegeneration). Focusing on RNA-binding proteins (RBPs), the involvement of Embryonic Lethal Abnormal Vision (ELAV) or Hu proteins and their complexes with target mRNAs in the aetiology of various dysfunctions, has suggested the great potential of compounds able to interfere with the complex stability as an innovative pharmacological strategy for the treatment of numerous diseases. Here, we present a rational follow-up investigation of the interaction between ELAV isoform HuR and structurally-related compounds (i.e., flavonoids and coumarins), naturally decorated with different functional groups, by means of STD-NMR and Molecular Modelling. Our results represent the foundation for the development of potent and selective ligands able to interfere with ELAV-RNA complexes.