• Catechol-based substrates of chalcone synthase as a scaffold for novel inhibitors of PqsD.

      Allegretta, Giuseppe; Weidel, Elisabeth; Empting, Martin; Hartmann, Rolf W; Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), PO Box 15 11 50, D-66041 Saarbrücken, Germany. (2015-01-27)
      A new strategy for treating Pseudomonas aeruginosa infections could be disrupting the Pseudomonas Quinolone Signal (PQS) quorum sensing (QS) system. The goal is to impair communication among the cells and, hence, reduce the expression of virulence factors and the formation of biofilms. PqsD is an essential enzyme for the synthesis of PQS and shares some features with chalcone synthase (CHS2), an enzyme expressed in Medicago sativa. Both proteins are quite similar concerning the size of the active site, the catalytic residues and the electrostatic surface potential at the entrance of the substrate tunnel. Hence, we evaluated selected substrates of the vegetable enzyme as potential inhibitors of the bacterial protein. This similarity-guided approach led to the identification of a new class of PqsD inhibitors having a catechol structure as an essential feature for activity, a saturated linker with two or more carbons and an ester moiety bearing bulky substituents. The developed compounds showed PqsD inhibition with IC50 values in the single-digit micromolar range. The binding mode of these compounds was investigated by Surface Plasmon Resonance (SPR) experiments revealing that their interaction with the protein is not influenced by the presence of the anthranilic acid bound to active site cysteine. Importantly, some compounds reduced the signal molecule production in cellulo.
    • Composing compound libraries for hit discovery--rationality-driven preselection or random choice by structural diversity?

      Weidel, Elisabeth; Negri, Matthias; Empting, Martin; Hinsberger, Stefan; Hartmann, Rolf W (2014)
      In order to identify new scaffolds for drug discovery, surface plasmon resonance is frequently used to screen structurally diverse libraries. Usually, hit rates are low and identification processes are time consuming. Hence, approaches which improve hit rates and, thus, reduce the library size are required.
    • Exploring the chemical space of ureidothiophene-2-carboxylic acids as inhibitors of the quorum sensing enzyme PqsD from Pseudomonas aeruginosa.

      Sahner, J Henning; Empting, Martin; Kamal, Ahmed; Weidel, Elisabeth; Groh, Matthias; Börger, Carsten; Hartmann, Rolf W; Pharmaceutical and Medicinal Chemistry, Saarland University & Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Department of Drug Design and Optimization, Campus C2 3, 66123 Saarbrücken, Germany. (2015-05-26)
      Pseudomonas aeruginosa employs a quorum sensing (QS) communication system that makes use of small diffusible molecules. Among other effects, the QS system coordinates the formation of biofilm which decisively contributes to difficulties in the therapy of Pseudomonas infections. The present work deals with the structure-activity exploration of ureidothiophene-2-carboxylic acids as inhibitors of PqsD, a key enzyme in the biosynthetic pathway of signal molecules in the Pseudomonas QS system. We describe an improvement of the inhibitory activity by successfully combining features from two different PqsD inhibitor classes. Furthermore the functional groups, which are responsible for the inhibitory potency, were identified. Moreover, the inability of the new inhibitors, to prevent signal molecule formation in whole cell assays, is discussed.
    • Molecular basis of HHQ biosynthesis: molecular dynamics simulations, enzyme kinetic and surface plasmon resonance studies

      Steinbach, Anke; Maurer, Christine K; Weidel, Elisabeth; Henn, Claudia; Brengel, Christian; Hartmann, Rolf W; Negri, Matthias (2013-08-01)
      Abstract Background PQS (P seudomonas Quinolone Signal) and its precursor HHQ are signal molecules of the P. aeruginosa quorum sensing system. They explicate their role in mammalian pathogenicity by binding to the receptor PqsR that induces virulence factor production and biofilm formation. The enzyme PqsD catalyses the biosynthesis of HHQ. Results Enzyme kinetic analysis and surface plasmon resonance (SPR) biosensor experiments were used to determine mechanism and substrate order of the biosynthesis. Comparative analysis led to the identification of domains involved in functionality of PqsD. A kinetic cycle was set up and molecular dynamics (MD) simulations were used to study the molecular bases of the kinetics of PqsD. Trajectory analysis, pocket volume measurements, binding energy estimations and decompositions ensured insights into the binding mode of the substrates anthraniloyl-CoA and β-ketodecanoic acid. Conclusions Enzyme kinetics and SPR experiments hint at a ping-pong mechanism for PqsD with ACoA as first substrate. Trajectory analysis of different PqsD complexes evidenced ligand-dependent induced-fit motions affecting the modified ACoA funnel access to the exposure of a secondary channel. A tunnel-network is formed in which Ser317 plays an important role by binding to both substrates. Mutagenesis experiments resulting in the inactive S317F mutant confirmed the importance of this residue. Two binding modes for β-ketodecanoic acid were identified with distinct catalytic mechanism preferences.
    • Molecular basis of HHQ biosynthesis: molecular dynamics simulations, enzyme kinetic and surface plasmon resonance studies.

      Steinbach, Anke; Maurer, Christine K; Weidel, Elisabeth; Henn, Claudia; Brengel, Christian; Hartmann, Rolf W; Negri, Matthias (2013)
      PQS (PseudomonasQuinolone Signal) and its precursor HHQ are signal molecules of the P. aeruginosa quorum sensing system. They explicate their role in mammalian pathogenicity by binding to the receptor PqsR that induces virulence factor production and biofilm formation. The enzyme PqsD catalyses the biosynthesis of HHQ.
    • Regulation of Burkholderia cenocepacia biofilm formation by RpoN and the c-di-GMP effector BerB.

      Fazli, Mustafa; Rybtke, Morten; Steiner, Elisabeth; Weidel, Elisabeth; Berthelsen, Jens; Groizeleau, Julie; Bin, Wu; Zhi, Boo Zhao; Yaming, Zhang; Kaever, Volkhard; et al. (2017-04-16)
      Knowledge about the molecular mechanisms that are involved in the regulation of biofilm formation is essential for the development of biofilm-control measures. It is well established that the nucleotide second messenger cyclic diguanosine monophosphate (c-di-GMP) is a positive regulator of biofilm formation in many bacteria, but more knowledge about c-di-GMP effectors is needed. We provide evidence that c-di-GMP, the alternative sigma factor RpoN (σ54), and the enhancer-binding protein BerB play a role in biofilm formation of Burkholderia cenocepacia by regulating the production of a biofilm-stabilizing exopolysaccharide. Our findings suggest that BerB binds c-di-GMP, and activates RpoN-dependent transcription of the berA gene coding for a c-di-GMP-responsive transcriptional regulator. An increased level of the BerA protein in turn induces the production of biofilm-stabilizing exopolysaccharide in response to high c-di-GMP levels. Our findings imply that the production of biofilm exopolysaccharide in B. cenocepacia is regulated through a cascade involving two consecutive transcription events that are both activated by c-di-GMP. This type of regulation may allow tight control of the expenditure of cellular resources.