• Comparing the Self-Assembly of Sexiphenyl-Dicarbonitrile on Graphite and Graphene on Cu(111).

      Schmidt, Nico; Li, Jun; Gottardi, Stefano; Moreno-Lopez, Juan Carlos; Enache, Mihaela; Monjas, Leticia; van der Vlag, Ramon; Havenith, Remco W A; Hirsch, Anna K H; Stöhr, Meike; et al. (Wiley-Blackwell, 2019-04-01)
      A comparative study on the self-assembly of sexiphenyl-dicarbonitrile on highly oriented pyrolytic graphite and single-layer graphene on Cu(111) is presented. Despite an overall low molecule-substrate interaction, the close-packed structures exhibit a peculiar shift repeating every four to five molecules. This shift has hitherto not been reported for similar systems and is hence a unique feature induced by the graphitic substrates.
    • Low-Dimensional Metal-Organic Coordination Structures on Graphene.

      Li, Jun; Solianyk, Leonid; Schmidt, Nico; Baker, Brian; Gottardi, Stefano; Moreno Lopez, Juan Carlos; Enache, Mihaela; Monjas, Leticia; van der Vlag, Ramon; Havenith, Remco W A; et al. (American Society of Chemistry, 2019-05-23)
      We report the formation of one- and two-dimensional metal-organic coordination structures from para-hexaphenyl-dicarbonitrile (NC-Ph6-CN) molecules and Cu atoms on graphene epitaxially grown on Ir(111). By varying the stoichiometry between the NC-Ph6-CN molecules and Cu atoms, the dimensionality of the metal-organic coordination structures could be tuned: for a 3:2 ratio, a two-dimensional hexagonal porous network based on threefold Cu coordination was observed, while for a 1:1 ratio, one-dimensional chains based on twofold Cu coordination were formed. The formation of metal-ligand bonds was supported by imaging the Cu atoms within the metal-organic coordination structures with scanning tunneling microscopy. Scanning tunneling spectroscopy measurements demonstrated that the electronic properties of NC-Ph6-CN molecules and Cu atoms were different between the two-dimensional porous network and one-dimensional molecular chains.
    • Novel 15-Lipoxygenase-1 Inhibitor Protects Macrophages from Lipopolysaccharide-Induced Cytotoxicity.

      Guo, Hao; Verhoek, Iris C; Prins, Gerian G H; van der Vlag, Ramon; van der Wouden, Petra E; van Merkerk, Ronald; Quax, Wim J; Olinga, Peter; Hirsch, Anna K H; Dekker, Frank J; et al. (ACS, 2019-04-19)
      Various mechanisms for regulated cell death include the formation of oxidative mediators such as lipid peroxides and nitric oxide (NO). In this respect, 15-lipoxygenase-1 (15-LOX-1) is a key enzyme that catalyzes the formation of lipid peroxides. The actions of these peroxides are interconnected with nuclear factor-κB signaling and NO production. Inhibition of 15-LOX-1 holds promise to interfere with regulated cell death in inflammatory conditions. In this study, a novel potent 15-LOX-1 inhibitor, 9c (i472), was developed and structure-activity relationships were explored. In vitro, this inhibitor protected cells from lipopolysaccharide-induced cell death, inhibiting NO formation and lipid peroxidation. Thus, we provide a novel 15-LOX-1 inhibitor that inhibits cellular NO production and lipid peroxidation, which set the stage for further exploration of these mechanisms.
    • Optimized Inhibitors of MDM2 via an Attempted Protein-Templated Reductive Amination.

      van der Vlag, Ramon; Yagiz Unver, M; Felicetti, Tommaso; Twarda-Clapa, Aleksandra; Kassim, Fatima; Ermis, Cagdas; Neochoritis, Constantinos G; Musielak, Bogdan; Labuzek, Beata; Dömling, Alexander; et al. (Wiley, 2019-12-12)
      Innovative and efficient hit-identification techniques are required to accelerate drug discovery. Protein-templated fragment ligations represent a promising strategy in early drug discovery, enabling the target to assemble and select its binders from a pool of building blocks. Development of new protein-templated reactions to access a larger structural diversity and expansion of the variety of targets to demonstrate the scope of the technique are of prime interest for medicinal chemists. Herein, we present our attempts to use a protein-templated reductive amination to target protein-protein interactions (PPIs), a challenging class of drug targets. We address a flexible pocket, which is difficult to achieve by structure-based drug design. After careful analysis we did not find one of the possible products in the kinetic target-guided synthesis (KTGS) approach, however subsequent synthesis and biochemical evaluation of each library member demonstrated that all the obtained molecules inhibit MDM2. The most potent library member (Ki =0.095 μm) identified is almost as active as Nutlin-3, a potent inhibitor of the p53-MDM2 PPI.
    • Replacement of an Indole Scaffold Targeting Human 15-Lipoxygenase-1 Using Combinatorial Chemistry.

      Prismawan, Deka; van der Vlag, Ramon; Guo, Hao; Dekker, Frank J; Hirsch, Anna K H; HIPS, Helmholtz-Institut für Pharmazeutische Forschung Saarland, Universitätscampus E8.1 66123 Saarbrücken, Germany. (Wiley-Blackwell, 2019-05-01)
      Human 15-lipoxygenase-1 (15-LOX-1) belongs to the class of lipoxygenases, which catalyze oxygenation of polyunsaturated fatty acids, such as arachidonic and linoleic acid. Recent studies have shown that 15-LOX-1 plays an important role in physiological processes linked to several diseases such as airway inflammation disease, coronary artery disease, and several types of cancer such as rectal, colon, breast and prostate cancer. In this study, we aimed to extend the structural diversity of 15-LOX-1 inhibitors, starting from the recently identified indolyl core. In order to find new scaffolds, we employed a combinatorial approach using various aromatic aldehydes and an aliphatic hydrazide tail. This scaffold-hopping study resulted in the identification of the 3-pyridylring as a suitable replacement of the indolyl core with an inhibitory activity in the micromolar range (IC50=16±6 μm) and a rapid and efficient structure-activity relationship investigation.