• Squalenyl Hydrogen Sulfate Nanoparticles for Simultaneous Delivery of Tobramycin and an Alkylquinolone Quorum Sensing Inhibitor Enable the Eradication of P. aeruginosa Biofilm Infections.

      Ho, Duy-Khiet; Murgia, Xabier; de Rossi, Chiara; Christmann, Rebekka; Hüfner de Mello Martins, Antonio G; Koch, Marcus; Andreas, Anastasia; Herrmann, Jennifer; Müller, Rolf; Empting, Martin; et al. (Wiley, 2020-04-03)
      Elimination of pulmonary Pseudomonas aeruginosa (PA) infections is challenging to accomplish with antibiotic therapies, mainly due to resistance mechanisms. Quorum sensing inhibitors (QSIs) interfering with biofilm formation can thus complement antibiotics. For simultaneous and improved delivery of both active agents to the infection sites, self-assembling nanoparticles of a newly synthesized squalenyl hydrogen sulfate (SqNPs) were prepared. These nanocarriers allowed for remarkably high loading capacities of hydrophilic antibiotic tobramycin (Tob) and a novel lipophilic QSI at 30 % and circa 10 %, respectively. The drug-loaded SqNPs showed improved biofilm penetration and enhanced efficacy in relevant biological barriers (mucin/human tracheal mucus, biofilm), leading to complete eradication of PA biofilms at circa 16-fold lower Tob concentration than Tob alone. This study offers a viable therapy optimization and invigorates the research and development of QSIs for clinical use.
    • Rapid Discovery of Aspartyl Protease Inhibitors Using an Anchoring Approach.

      Konstantinidou, Markella; Magari, Francesca; Sutanto, Fandi; Haupenthal, Jörg; Jumde, Varsha R; Ünver, M Yagiz; Heine, Andreas; Camacho, Carlos Jamie; Hirsch, Anna K H; Klebe, Gerhard; et al. (Wiley-VCH, 2020-03-18)
      Pharmacophore searches that include anchors, fragments contributing above average to receptor binding, combined with one-step syntheses are a powerful approach for the fast discovery of novel bioactive molecules. Here, we are presenting a pipeline for the rapid and efficient discovery of aspartyl protease inhibitors. First, we hypothesized that hydrazine could be a multi-valent warhead to interact with the active site Asp carboxylic acids. We incorporated the hydrazine anchor in a multicomponent reaction and created a large virtual library of hydrazine derivatives synthetically accessible in one-step. Next, we performed anchor-based pharmacophore screening of the libraries and resynthesized top-ranked compounds. The inhibitory potency of the molecules was finally assessed by an enzyme activity assay and the binding mode confirmed by several soaked crystal structures supporting the validity of the hypothesis and approach. The herein reported pipeline of tools will be of general value for the rapid generation of receptor binders beyond Asp proteases.
    • Synthesis and Biological Evaluation of Novel 2-Substituted ­Analogues of (-)-Pentenomycin i

      Zisopoulou, Stavroula A.; Bousis, Spyridon; Haupenthal, Jörg; Herrmann, Jennifer; Müller, Rolf; Hirsch, Anna K.H.; Komiotis, Dimitri; Gallos, John K.; Stathakis, Christos I.; HIPS, Helmholtz-Institut für Pharmazeutische Forschung Saarland, Universitätscampus E8.1 66123 Saarbrücken, Germany. (Thieme, 2020-03-17)
      A library of novel 2-substituted derivatives of the antibiotic natural product pentenomycin I is presented. The new collection of analogues is divided in two main classes, 2-alkynyl- and 2-aryl- derivatives, which are accessed by the appropriate type of palladium-catalyzed cross-coupling reaction of the 2-iodo-protected pentenomycin I with suitable nucleophiles. The new derivatives were tested for their activity against certain types of bacteria and one of them, compound 8h, was found to exhibit significant inhibitory activity against several Gram-positive bacteria but also displayed cytotoxic activity against eukaryotic cell lines.
    • Advancing human pulmonary disease models in preclinical research: opportunities for lung-on-chips..

      Artzy-Schnirman, Arbel; Lehr, Claus-Michael; Sznitman, Josué; HIPS, Helmholtz-Institut für Pharmazeutische Forschung Saarland, Universitätscampus E8.1 66123 Saarbrücken, Germany. (Taylor&Francis, 2020-03-11)
      [No abstracr available]
    • Cystobactamid 507: Concise Synthesis, Mode of Action and Optimization toward More Potent Antibiotics.

      Elgaher, Walid A M; Hamed, Mostafa M; Baumann, Sascha; Herrmann, Jennifer; Siebenbürger, Lorenz; Krull, Jana; Cirnski, Katarina; Kirschning, Andreas; Brönstrup, Mark; Müller, Rolf; et al. (Wiley-VCH, 2020-01-26)
      Lack of new antibiotics and increasing antimicrobial resistance are the main concerns of healthcare community nowadays, which necessitate the search for novel antibacterial agents. Recently, we discovered the cystobactamids - a novel natural class of antibiotics with broad-spectrum antibacterial activity. In this work, we describe a concise total synthesis of cystobactamid 507, the identification of the bioactive conformation using non-covalently bonded rigid analogs, the first structure–activity relationship (SAR) study for cystobactamid 507 leading to new analogs with high metabolic stability, superior topoisomerase IIA inhibition, antibacterial activity and, importantly, stability toward the resistant factor AlbD. Deeper insight into the mode of action revealed that the cystobactamids employ DNA minor groove binding as part of the drug–target interaction without showing significant intercalation. By designing a new analog of cystobactamid 919-2 we finally demonstrated that these findings could be further exploited to obtain more potent hexapeptides against Gram-negative bacteria.
    • Discovery of Novel Latency-Associated Nuclear Antigen Inhibitors as Antiviral Agents Against Kaposi's Sarcoma-Associated Herpesvirus.

      Kirsch, Philine; Jakob, Valentin; Elgaher, Walid A M; Walt, Christine; Oberhausen, Kevin; Schulz, Thomas F; Empting, Martin; HIPS, Helmholtz-Institut für Pharmazeutische Forschung Saarland, Universitätscampus E8.1 66123 Saarbrücken, Germany.;HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (American Chemical Society (ACS), 2020-01-24)
      With the aim to develop novel antiviral agents against Kaposi's Sarcoma Herpesvirus (KSHV), we are targeting the latency-associated nuclear antigen (LANA). This protein plays an important role in viral genome maintenance during latent infection. LANA has the ability to tether the viral genome to the host nucleosomes and, thus, ensures latent persistence of the viral genome in the host cells. By inhibition of the LANA-DNA interaction, we seek to eliminate or reduce the load of the viral DNA in the host. To achieve this goal, we screened our in-house library using a dedicated fluorescence polarization (FP)-based competition assay, which allows for the quantification of LANA-DNA-interaction inhibition by small organic molecules. We successfully identified three different compound classes capable of disrupting this protein-nucleic acid interaction. We characterized these compounds by IC50 dose-response evaluation and confirmed the compound-LANA interaction using surface plasmon resonance (SPR) spectroscopy. Furthermore, two of the three hit scaffolds showed only marginal cytotoxicity in two human cell lines. Finally, we conducted STD-NMR competition experiments with our new hit compounds and a previously described fragment-sized inhibitor. Based on these results, future compound linking approaches could serve as a promising strategy for further optimization studies in order to generate highly potent KSHV inhibitors.
    • Tracheal brush cells release acetylcholine in response to bitter tastants for paracrine and autocrine signaling.

      Hollenhorst, Monika I; Jurastow, Innokentij; Nandigama, Rajender; Appenzeller, Silke; Li, Lei; Vogel, Jörg; Wiederhold, Stephanie; Althaus, Mike; Empting, Martin; Altmüller, Janine; et al. (Wiley, 2020-01-01)
      For protection from inhaled pathogens many strategies have evolved in the airways such as mucociliary clearance and cough. We have previously shown that protective respiratory reflexes to locally released bacterial bitter "taste" substances are most probably initiated by tracheal brush cells (BC). Our single-cell RNA-seq analysis of murine BC revealed high expression levels of cholinergic and bitter taste signaling transcripts (Tas2r108, Gnat3, Trpm5). We directly demonstrate the secretion of acetylcholine (ACh) from BC upon stimulation with the Tas2R agonist denatonium. Inhibition of the taste transduction cascade abolished the increase in [Ca2+]i in BC and subsequent ACh-release. ACh-release is regulated in an autocrine manner. While the muscarinic ACh-receptors M3R and M1R are activating, M2R is inhibitory. Paracrine effects of ACh released in response to denatonium included increased [Ca2+]i in ciliated cells. Stimulation by denatonium or with Pseudomonas quinolone signaling molecules led to an increase in mucociliary clearance in explanted tracheae that was Trpm5- and M3R-mediated. We show that ACh-release from BC via the bitter taste cascade leads to immediate paracrine protective responses that can be boosted in an autocrine manner. This mechanism represents the initial step for the activation of innate immune responses against pathogens in the airways.
    • Surface state tunable energy and mass renormalization from homothetic quantum dot arrays.

      Piquero-Zulaica, Ignacio; Li, Jun; Abd El-Fattah, Zakaria M; Solianyk, Leonid; Gallardo, Iker; Monjas, Leticia; Hirsch, Anna K H; Arnau, Andres; Ortega, J Enrique; Stöhr, Meike; et al. (Royal Society of Chemistry, 2019-12-28)
      Quantum dot arrays in the form of molecular nanoporous networks are renowned for modifying the electronic surface properties through quantum confinement. Here we show that, compared to the pristine surface state, the band bottom of the confined states can exhibit downward shifts accompanied by a lowering of the effective masses simultaneous to the appearance of tiny gaps at the Brillouin zone boundaries. We observed these effects by angle resolved photoemission for two self-assembled homothetic (scalable) Co-coordinated metal-organic networks. Complementary scanning tunneling spectroscopy measurements confirmed these findings. Electron plane wave expansion simulations and density functional theory calculations provide insight into the nature of this phenomenon, which we assign to metal-organic overlayer-substrate interactions in the form of adatom-substrate hybridization. To date, the absence of the experimental band structure resulting from single metal adatom coordinated nanoporous networks has precluded the observation of the significant surface state renormalization reported here, which we infer to be general for low interacting and well-defined adatom arrays.
    • Spray-drying of inhalable, multifunctional formulations for the treatment of biofilms formed in cystic fibrosis.

      Lababidi, Nashrawan; Ofosu Kissi, Eric; Elgaher, Walid A M; Sigal, Valentin; Haupenthal, Jörg; Schwarz, Bianca C; Hirsch, Anna K H; Rades, Thomas; Schneider, Marc; HIPS, Helmholtz-Institut für Pharmazeutische Forschung Saarland, Universitätscampus E8.1 66123 Saarbrücken, Germany. (Elsevier, 2019-11-28)
      Cystic fibrosis (CF) is a serious lung disease, commonly susceptible to Pseudomonas aeruginosa colonization. The dense mucus together with biofilm formation limit drug permeability and prevent the drug from reaching the site of action, causing treatment failure of the bacterial infection. Besides the use of antibiotics, the mucolytic agent N-acetylcysteine (NAC) is recommended to be co-administered in the treatment of CF. Although several formulations have been developed for inhalation therapy to improve the pulmonary condition in CF patients, there is still no comprehensive study on a combined multifunctional dry powder formulation of antibiotics with NAC. In this work, we developed an innovative multifunctional dry powder inhaler (DPI) formulation based on salt formation between NAC and antibiotics and characterized their solid state properties and physical stability. NAC could be spray dried together with three different antibiotics, azithromycin (Azi), tobramycin (Tobra) and ciprofloxacin (Cipro), without the use of organic solvents to form Azi/NAC, Tobra/NAC and Cipro/NAC DPI formulations. Solid-state characterization of these DPI formulations showed that they were amorphous after spray drying. Azi/NAC and Tobra/NAC form co-amorphous salt systems that were physically stable under storage at stress conditions. For particle characterization, the obtained mass median aerodynamic diameters were in a suitable range for inhalation (< 5.0μm). The multifunctional antibiotic/NAC formulations conserved or improved the antibiotic susceptibility and showed promising results regarding the inhibition of P. aeruginosa PA14 biofilm formation.
    • Flexible Fragment Growing Boosts Potency of Quorum Sensing Inhibitors against Pseudomonas aeruginosa Virulence.

      Zender, Michael; Witzgall, Florian; Kiefer, Alexander Felix; Kirsch, Benjamin; Maurer, Christine K; Kany, Andreas M; Xu, Ningna; Schmelz, Stefan; Börger, Carsten; Blankenfeldt, Wulf; et al. (Wiley-VCH, 2019-11-11)
      Hit-to-lead optimization is a critical phase in drug discovery. Herein, we report on the fragment-based discovery and optimization of 2-amino pyridine derivatives as a novel lead-like structure for the treatment of the dangerous opportunistic pathogen Pseudomonas aeruginosa . We pursue an innovative treatment strategy by interfering with the Pseudomonas Quinolone Signal (PQS) Quorum Sensing (QS) system leading to an abolishment of bacterial pathogenicity. Our compounds act on the PQS receptor (PqsR), a key transcription factor controlling the expression of various pathogenicity determinants. In this target-driven approach, we made use of biophysical screening via surface plasmon resonance (SPR) followed by isothermal titration calorimetry (ITC)-enabled enthalpic efficiency (EE) evaluation. Hit optimization then involved growth vector identification and exploitation. Astonishingly, the latter was successfully achieved by introducing flexible linkers rather than rigid motifs leading to a boost in activity on the target receptor and anti-virulence potency.
    • Anti-biofilm Agents against Pseudomonas aeruginosa: A Structure-Activity Relationship Study of C-Glycosidic LecB Inhibitors

      Sommer, Roman; Rox, Katharina; Wagner, Stefanie; Hauck, Dirk; Henrikus, Sarah S; Newsad, Shelby; Arnold, Tatjana; Ryckmans, Thomas; Brönstrup, Mark; Imberty, Anne; et al. (American Chemical Society, 2019-10-24)
      Biofilm formation is a key mechanism of antimicrobial resistance. We have recently reported two classes of orally bioavailable C-glycosidic inhibitors of the Pseudomonas aeruginosa lectin LecB with antibiofilm activity. They proved efficient in target binding, were metabolically stable, nontoxic, selective, and potent in inhibiting formation of bacterial biofilm. Here, we designed and synthesized six new carboxamides and 24 new sulfonamides for a detailed structure-activity relationship for two clinically representative LecB variants. Sulfonamides generally showed higher inhibition compared to carboxamides, which was rationalized based on crystal structure analyses. Substitutions at the thiophenesulfonamide increased binding through extensive contacts with a lipophilic protein patch. These metabolically stable compounds showed a further increase in potency toward the target and in biofilm inhibition assays. In general, we established the structure-activity relationship for these promising antibiofilm agents and showed that modification of the sulfonamide residue bears future optimization potential.
    • From Wood to Tetrahydro-2-benzazepines in Three Waste-Free Steps: Modular Synthesis of Biologically Active Lignin-Derived Scaffolds.

      Elangovan, Saravanakumar; Afanasenko, Anastasiia; Haupenthal, Jörg; Sun, Zhuohua; Liu, Yongzhuang; Hirsch, Anna K H; Barta, Katalin; HIPS, Helmholtz-Institut für Pharmazeutische Forschung Saarland, Universitätscampus E8.1 66123 Saarbrücken, Germany. (American Society for Chemistry, 2019-10-23)
      nherently complex, lignin-derived aromatic monomers comprising valuable structural moieties present in many pharmaceuticals would serve as ideal substrates for the construction of biologically active molecules. Here, we describe a strategy that incorporates all intrinsic functional groups present in platform chemicals obtained by lignin depolymerization into value-added amines, using sustainable catalytic methods and benign solvents. Our strikingly efficient protocol provides access to libraries of aminoalkyl-phenol derivatives and seven-membered N-heterocycles directly from wood in two, respectively three, waste-free steps. Several molecules in these libraries have shown promising antibacterial or anticancer activities, emphasizing the advantage of this modular synthetic strategy and the potential for drug discovery. The sustainable catalytic pathways presented here can lead to significant benefits for the pharmaceutical industry where reduction of hazardous waste is a prime concern, and the described strategies that lead to high-value products from non-edible biomass waste streams also markedly increase the economic feasibility of lignocellulosic biorefineries.
    • Proteomic and Membrane Lipid Correlates of Reduced Host Defense Peptide.

      Kohler, Christian; Proctor, Richard A; Bayer, Arnold S; Yeaman, Michael R; Lalk, Michael; Engelmann, Susanne; Mishra, Nagendra N; HIPS, Helmholtz-Institut für Pharmazeutische Forschung Saarland, Universitätscampus E8.1 66123 Saarbrücken, Germany. (MPDI, 2019-09-28)
      We previously described a transposon mutant in Staphylococcus aureus strain SH1000 that exhibited reduced susceptibility to cationic thrombin-induced platelet microbicidal proteins (tPMPs). The transposon insertion site was mapped to the gene snoD, the staphylococcal nuo orthologue. Hence, further studies have been performed to understand how this mutation impacts susceptibility to tPMP, by comparing proteomics profiling and membrane lipid analyses of the parent vs. mutant strains. Surprisingly, the mutant showed differential regulation of only a single protein when cultivated aerobically (FadB), and only a small number of proteins under anaerobic growth conditions (AdhE, DapE, Ddh, Ald1, IlvA1, AgrA, Rot, SA2366, and SA2367). Corresponding to FadB impact on lipid remodeling, membrane fatty acid analyses showed that the snoD mutant contained more short chain anteiso-, but fewer short chain iso-branched chain fatty acids under both aerobic and anaerobic conditions vs. the parental strain. Based upon these proteomic and membrane compositional data, a hypothetical "network" model was developed to explain the impact of the snoD mutation upon tPMP susceptibility.
    • Induction of rare conformation of oligosaccharide by binding to calcium-dependent bacterial lectin: X-ray crystallography and modelling study.

      Lepsik, Martin; Sommer, Roman; Kuhaudomlarp, Sakonwan; Lelimousin, Mickaël; Paci, Emanuele; Varrot, Annabelle; Titz, Alexander; Imberty, Anne; HIPS, Helmholtz-Institut für Pharmazeutische Forschung Saarland, Universitätscampus E8.1 66123 Saarbrücken, Germany. (Elsevier, 2019-09-01)
      Pathogenic micro-organisms utilize protein receptors (lectins) in adhesion to host tissues, a process that in some cases relies on the interaction between lectins and human glycoconjugates. Oligosaccharide epitopes are recognized through their three-dimensional structure and their flexibility is a key issue in specificity. In this paper, we analysed by X-ray crystallography the structures of the LecB lectin from two strains of Pseudomonas aeruginosa in complex with Lewis x oligosaccharide present on cell surfaces of human tissues. An unusual conformation of the glycan was observed in all binding sites with a non-canonical syn orientation of the N-acetyl group of N-acetyl-glucosamine. A PDB-wide search revealed that such an orientation occurs only in 4% of protein/carbohydrate complexes. Theoretical chemistry calculations showed that the observed conformation is unstable in solution but stabilised by the lectin. A reliable description of LecB/Lewis x complex by force field-based methods had proven especially challenging due to the special feature of the binding site, two closely apposed Ca2+ ions which induce strong charge delocalisation. By comparing various force-field parametrisations, we propose a general strategy which will be useful in near future for designing carbohydrate-based ligands (glycodrugs) against other calcium-dependent protein receptors.
    • Lectin antagonists in infection, immunity, and inflammation.

      Meiers, Joscha; Siebs, Eike; Zahorska, Eva; Titz, Alexander; HIPS, Helmholtz-Institut für Pharmazeutische Forschung Saarland, Universitätscampus E8.1 66123 Saarbrücken, Germany. (Elsevier, 2019-08-27)
      Lectins are proteins found in all domains of life with a plethora of biological functions, especially in the infection process, immune response, and inflammation. Targeting these carbohydrate-binding proteins is challenged by the fact that usually low affinity interactions between lectin and glycoconjugate are observed. Nature often circumvents this process through multivalent display of ligand and lectin. Consequently, the vast majority of synthetic antagonists are multivalently displayed native carbohydrates. At the cost of disadvantageous pharmacokinetic properties and possibly a reduced selectivity for the target lectin, the molecules usually possess very high affinities to the respective lectin through ligand epitope avidity. Recent developments include the advent of glycomimetic or allosteric small molecule inhibitors for this important protein class and their use in chemical biology and drug research. This evolution has culminated in the transition of the small molecule GMI-1070 into clinical phase III. In this opinion article, an overview of the most important developments of lectin antagonists in the last two decades with a focus on the last five years is given
    • Rational Adaptation of L3MBTL1 Inhibitors to Create Small-Molecule Cbx7 Antagonists.

      Simhadri, Chakravarthi; Daze, Kevin D; Douglas, Sarah F; Milosevich, Natalia; Monjas, Leticia; Dev, Amarjot; Brown, Tyler M; Hirsch, Anna K H; Wulff, Jeremy E; Hof, Fraser; et al. (Wiley, 2019-08-06)
      Chromobox homolog 7 (Cbx7) is an epigenetic modulator that is an important driver of multiple cancers. It is a methyl reader protein that operates by recognizing and binding to methylated lysine residues on specific partners. Herein we report our efforts to create low-molecular-weight inhibitors of Cbx7 by making rational structural adaptations to inhibitors of a different methyl reader protein, L3MBTL1, inhibitors that had previously been reported to be inactive against Cbx7. We evaluated each new inhibitor for Cbx7 inhibition by fluorescence polarization assay, and also confirmed the binding of selected inhibitors to Cbx7 by saturation-transfer difference NMR spectroscopy. This work identified multiple small-molecule inhibitors with modest (IC50 : 257-500 μm) potency.
    • Inverting Small Molecule-Protein Recognition by the Fluorine Gauche Effect: Selectivity Regulated by Multiple H→F Bioisosterism.

      Bentler, Patrick; Bergander, Klaus; Daniliuc, Constantin G; Mück-Lichtenfeld, Christian; Jumde, Ravindra P; Hirsch, Anna K H; Gilmour, Ryan; HIPS, Helmholtz-Institut für Pharmazeutische Forschung Saarland, Universitätscampus E8.1 66123 Saarbrücken, Germany (Wiley-VCH, 2019-08-05)
      Fluorinated motifs have a venerable history in drug discovery, but as C(sp3 )-F-rich 3D scaffolds appear with increasing frequency, the effect of multiple bioisosteric changes on molecular recognition requires elucidation. Herein we demonstrate that installation of a 1,3,5-stereotriad, in the substrate for a commonly used lipase from Pseudomonas fluorescens does not inhibit recognition, but inverts stereoselectivity. This provides facile access to optically active, stereochemically well-defined organofluorine compounds (up to 98 % ee). Whilst orthogonal recognition is observed with fluorine, the trend does not hold for the corresponding chlorinated substrates or mixed halogens. This phenomenon can be placed on a structural basis by considering the stereoelectronic gauche effect inherent to F-C-C-X systems (σ→σ*). Docking reveals that this change in selectivity (H versus F) with a common lipase results from inversion in the orientation of the bound substrate being processed as a consequence of conformation. This contrasts with the stereochemical interpretation of the biogenetic isoprene rule, whereby product divergence from a common starting material is also a consequence of conformation, albeit enforced by two discrete enzymes.
    • Absorption of Anthocyanin Rutinosides after Consumption of a Blackcurrant ( Ribes nigrum L.) Extract.

      Röhrig, Teresa; Kirsch, Verena; Schipp, Dorothea; Galan, Jens; Richling, Elke; HIPS, Helmholtz-Institut für Pharmazeutische Forschung Saarland, Universitätscampus E8.1 66123 Saarbrücken, Germany. (American Chemical Society, 2019-06-19)
      The dominant anthocyanins in blackcurrant are delphinidin-3-O-rutinoside and cyanidin-3-O-rutinoside. Data on their absorption and distribution in the human body are limited. Therefore, we performed a human pilot study on five healthy male volunteers consuming a blackcurrant (Ribes nigrum L.) extract. The rutinosides and their degradation products gallic acid and protocatechuic acid were determined in plasma and urine. The rutinosides’ concentrations peaked in both plasma and urine samples within 2 h of extract ingestion. The recoveries of delphinidin-3-O-rutinoside and cyanidin-3-O-rutinoside from urine samples were 0.040 ± 0.011% and 0.048 ± 0.016%, respectively, over a 48 h period. Protocatechuic acid concentration increased significantly after ingestion of the blackcurrant extract. Our results show that after ingestion of a blackcurrant extract containing delphinidin-3-O-rutinoside and cyanidin-3-O-rutinoside, significant quantities of biologically active compounds circulated in the plasma and were excreted via urine. Furthermore, these results contribute to the understanding of anthocyanin metabolism in humans.
    • Low-Dimensional Metal-Organic Coordination Structures on Graphene.

      Li, Jun; Solianyk, Leonid; Schmidt, Nico; Baker, Brian; Gottardi, Stefano; Moreno Lopez, Juan Carlos; Enache, Mihaela; Monjas, Leticia; van der Vlag, Ramon; Havenith, Remco W A; et al. (American Society of Chemistry, 2019-05-23)
      We report the formation of one- and two-dimensional metal-organic coordination structures from para-hexaphenyl-dicarbonitrile (NC-Ph6-CN) molecules and Cu atoms on graphene epitaxially grown on Ir(111). By varying the stoichiometry between the NC-Ph6-CN molecules and Cu atoms, the dimensionality of the metal-organic coordination structures could be tuned: for a 3:2 ratio, a two-dimensional hexagonal porous network based on threefold Cu coordination was observed, while for a 1:1 ratio, one-dimensional chains based on twofold Cu coordination were formed. The formation of metal-ligand bonds was supported by imaging the Cu atoms within the metal-organic coordination structures with scanning tunneling microscopy. Scanning tunneling spectroscopy measurements demonstrated that the electronic properties of NC-Ph6-CN molecules and Cu atoms were different between the two-dimensional porous network and one-dimensional molecular chains.
    • Protein-Templated Dynamic Combinatorial Chemistry: Brief Overview and Experimental Protocol

      Hartman, Alwin M.; Gierse, Robin M.; Hirsch, Anna K. H.; HIPS, Helmholtz-Institut für Pharmazeutische Forschung Saarland, Universitätscampus E8.1 66123 Saarbrücken, Germany. (Wiley, 2019-05-03)
      Dynamic combinatorial chemistry (DCC) is a powerful tool to identify bioactive compounds. This efficient technique allows the target to select its own binders and circumvents the need for synthesis and biochemical evaluation of all individual derivatives. An ever‐increasing number of publications report the use of DCC on biologically relevant target proteins. This minireview complements previous reviews by focusing on the experimental protocol and giving detailed examples of essential steps and factors that need to be considered, such as protein stability, buffer composition and cosolvents.