• Design and synthesis of a library of lead-like 2,4-bisheterocyclic substituted thiophenes as selective Dyrk/Clk inhibitors.

      Schmitt, Christian; Kail, Dagmar; Mariano, Marica; Empting, Martin; Weber, Nadja; Paul, Tamara; Hartmann, Rolf W.; Engel, Matthias; Helmholtz Institute für Pharmazeutische Forschung Saarland, Universitätscampus E8.1, 66123 Saarbrücken, Germany. (2014)
      The Dyrk family of protein kinases is implicated in the pathogenesis of several diseases, including cancer and neurodegeneration. Pharmacological inhibitors were mainly described for Dyrk1A so far, but in fewer cases for Dyrk1B, Dyrk2 or other isoforms. Herein, we report the development and optimization of 2,4-bisheterocyclic substituted thiophenes as a novel class of Dyrk inhibitors. The optimized hit compounds displayed favorable pharmacokinetic properties and high ligand efficiencies, and inhibited Dyrk1B in intact cells. In a larger selectivity screen, only Clk1 and Clk4 were identified as additional targets of compound 48, but no other kinases frequently reported as off-targets. Interestingly, Dyrk1A is implicated in the regulation of alternative splicing, a function shared with Clk1/Clk4; thus, some of the dual inhibitors might be useful as efficient splicing modulators. A further compound (29) inhibited Dyrk1A and 1B with an IC50 of 130 nM, showing a moderate selectivity over Dyrk2. Since penetration of the central nervous system (CNS) seems possible based on the physicochemical properties, this compound might serve as a lead for the development of potential therapeutic agents against glioblastoma. Furthermore, an inhibitor selective for Dyrk2 (24) was also identified, which might be are suitable as a pharmacological tool to dissect Dyrk2 isoform-mediated functions.
    • Design, synthesis and evaluation of novel 16-imidazolyl substituted steroidal derivatives possessing potent diversified pharmacological properties.

      Bansal, Ranju; Guleria, Sheetal; Thota, Sridhar; Bodhankar, Subhash L; Patwardhan, Moreshwar R; Zimmer, Christina; Hartmann, Rolf W; Harvey, Alan L; University Institute of Pharmaceutical Sciences, Sector-14, Panjab University, Chandigarh 160014, India. ranju29in@yahoo.co.in (2012-05)
      As a part of our investigations into the structural-activity relationship studies of a novel class of medicinally active 16-substituted steroids, several new 16-imidazolyl substituted steroidal derivatives have been synthesized and pharmacologically evaluated in the current study. The new steroidal analogues 5, 6, 8, 9, 11 and 12 exhibited moderate cytotoxic effects in sixty cancer cell lines derived from nine cancers types. The imidazolyl substituted steroidal derivatives 6 (DPJ-RG-1241) and 7 (RB-401) were obtained as the powerful inhibitors of aromatase with IC50=0.18 μM and IC50=0.168 μM, respectively, approximately 1.2 and 1.4 times more potent in comparison to standard drug exemestane. The bis-quaternary steroids 13 and 14 displayed potent skeletal muscle relaxant properties. An affinity constant of 0.007 μM was observed for compound 14 on frog rectus abdominis muscle preparation and 13 displayed a very high anticholinesterase activity K(i)=25 nM, approximately 115-fold higher in comparison to standard drug galanthamine (K(i)=2.9 μM).
    • Hits identified in library screening demonstrate selective CYP17A1 lyase inhibition.

      Krug, Sebastian J; Hu, Qingzhong; Hartmann, Rolf W; Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2.3, 66123 Saarbrücken, Germany. (2013-03)
      A screening of structurally different steroid hormone synthesis inhibitors was performed in order to find a starting point for the development of a new inhibitor of the bifunctional steroidogenic enzyme CYP17A1. Emphasis was placed on determination of selectivity between the two catalytic steps, namely 17α-hydroxylase and C(17,20)-lyase. For that purpose a new inhibition assay has been developed. Hits identified within this novel assay demonstrated selective inhibition of CYP17A1 lyase activity, and thus mark the basis for the development of selective C(17,20)-lyase inhibitors for the treatment of prostate cancer.