• Flotillin-mediated membrane fluidity controls peptidoglycan synthesis and MreB movement.

      Zielińska, Aleksandra; Savietto, Abigail; de Sousa Borges, Anabela; Martinez, Denis; Berbon, Melanie; Roelofsen, Joël R; Hartman, Alwin M; de Boer, Rinse; Van der Klei, Ida J; Hirsch, Anna Kh; et al. (eLife Sciences Publications, Ltd., 2020-07-14)
      Every living cell is enclosed by a flexible membrane made of molecules known as phospholipids, which protects the cell from harmful chemicals and other threats. In bacteria and some other organisms, a rigid structure known as the cell wall sits just outside of the membrane and determines the cell’s shape. There are several proteins in the membrane of bacteria that allow the cell to grow by assembling new pieces of the cell wall. To ensure these proteins expand the cell wall at the right locations, another protein known as MreB moves and organizes them to the appropriate place in the membrane and controls their activity. Previous studies have found that another class of proteins called flotillins are involved in arranging proteins and phospholipid molecules within membranes. Bacteria lacking these proteins do not grow properly and are unable to maintain their normal shape. However, the precise role of the flotillins remained unclear. Here, Zielińska, Savietto et al. used microscopy approaches to study flotillins in a bacterium known as Bacillus subtilis. The experiments found that, in the presence of flotillins, MreB moved around the membrane more quickly (suggesting it was more active) than when no flotillins were present. Similar results were observed when bacterial cells lacking flotillins were treated with a chemical that made membranes more ‘fluid’ – that is, made it easier for the molecules within the membrane to travel around. Further experiments found that flotillins allowed the phospholipid molecules within an artificial membrane to move around more freely, which increases the fluidity of the membrane. These findings suggest that flotillins make the membranes of bacterial cells more fluid to help cells expand their walls and perform several other processes. Understanding how bacteria control the components of their membranes will further our understanding of how many currently available antibiotics work and may potentially lead to the design of new antibiotics in the future.