• Design and Synthesis of Bioisosteres of Acylhydrazones as Stable Inhibitors of the Aspartic Protease Endothiapepsin.

      Jumde, Varsha R; Mondal, Milon; Gierse, Robin M; Unver, M Yagiz; Magari, Francesca; van Lier, Roos C W; Heine, Andreas; Klebe, Gerhard; Hirsch, Anna K H; HIPS, Helmholtz-Institut für Pharmazeutische Forschung Saarland, Universitätscampus E8.1 66123 Saarbrücken, Germany. (Elsevier, 2018-11-06)
      Acylhydrazone-based dynamic combinatorial chemistry (DCC) is a powerful strategy for the rapid identification of novel hits. Even though acylhydrazones are important structural motifs in medicinal chemistry, their further progression in development may be hampered by major instability and potential toxicity under physiological conditions. It is therefore of paramount importance to identify stable replacements for acylhydrazone linkers. Herein, we present the first report on the design and synthesis of stable bioisosteres of acylhydrazone-based inhibitors of the aspartic protease endothiapepsin as a follow-up to a DCC study. The most successful bioisostere is equipotent, bears an amide linker, and we confirmed its binding mode by X-ray crystallography. Having some validated bioisosteres of acylhydrazones readily available might accelerate hit-to-lead optimization in future acylhydrazone-based DCC projects.
    • Dynamic Combinatorial Chemistry to Identify Binders of ThiT, an S-Component of the Energy-Coupling Factor Transporter for Thiamine.

      Monjas, Leticia; Swier, Lotteke J Y M; Setyawati, Inda; Slotboom, Dirk J; Hirsch, Anna K H; Helmholtz-Institut für pharmazeutische Forschung Saarland, Universitätscampus E9.1, 66123 Saarbrücken, Germany. (2017-10-20)
      We applied dynamic combinatorial chemistry (DCC) to identify ligands of ThiT, the S-component of the energy-coupling factor (ECF) transporter for thiamine in Lactococcus lactis. We used a pre-equilibrated dynamic combinatorial library (DCL) and saturation-transfer difference (STD) NMR spectroscopy to identify ligands of ThiT. This is the first report in which DCC is used for fragment growing to an ill-defined pocket, and one of the first reports for its application with an integral membrane protein as target.
    • Flexible Fragment Growing Boosts Potency of Quorum Sensing Inhibitors against Pseudomonas aeruginosa Virulence.

      Zender, Michael; Witzgall, Florian; Kiefer, Alexander Felix; Kirsch, Benjamin; Maurer, Christine K; Kany, Andreas M; Xu, Ningna; Schmelz, Stefan; Börger, Carsten; Blankenfeldt, Wulf; et al. (Wiley-VCH, 2019-11-11)
      Hit-to-lead optimization is a critical phase in drug discovery. Herein, we report on the fragment-based discovery and optimization of 2-amino pyridine derivatives as a novel lead-like structure for the treatment of the dangerous opportunistic pathogen Pseudomonas aeruginosa . We pursue an innovative treatment strategy by interfering with the Pseudomonas Quinolone Signal (PQS) Quorum Sensing (QS) system leading to an abolishment of bacterial pathogenicity. Our compounds act on the PQS receptor (PqsR), a key transcription factor controlling the expression of various pathogenicity determinants. In this target-driven approach, we made use of biophysical screening via surface plasmon resonance (SPR) followed by isothermal titration calorimetry (ITC)-enabled enthalpic efficiency (EE) evaluation. Hit optimization then involved growth vector identification and exploitation. Astonishingly, the latter was successfully achieved by introducing flexible linkers rather than rigid motifs leading to a boost in activity on the target receptor and anti-virulence potency.
    • Rapid Discovery of Aspartyl Protease Inhibitors Using an Anchoring Approach.

      Konstantinidou, Markella; Magari, Francesca; Sutanto, Fandi; Haupenthal, Jörg; Jumde, Varsha R; Ünver, M Yagiz; Heine, Andreas; Camacho, Carlos Jamie; Hirsch, Anna K H; Klebe, Gerhard; et al. (Wiley-VCH, 2020-03-18)
      Pharmacophore searches that include anchors, fragments contributing above average to receptor binding, combined with one-step syntheses are a powerful approach for the fast discovery of novel bioactive molecules. Here, we are presenting a pipeline for the rapid and efficient discovery of aspartyl protease inhibitors. First, we hypothesized that hydrazine could be a multi-valent warhead to interact with the active site Asp carboxylic acids. We incorporated the hydrazine anchor in a multicomponent reaction and created a large virtual library of hydrazine derivatives synthetically accessible in one-step. Next, we performed anchor-based pharmacophore screening of the libraries and resynthesized top-ranked compounds. The inhibitory potency of the molecules was finally assessed by an enzyme activity assay and the binding mode confirmed by several soaked crystal structures supporting the validity of the hypothesis and approach. The herein reported pipeline of tools will be of general value for the rapid generation of receptor binders beyond Asp proteases.
    • Rational Adaptation of L3MBTL1 Inhibitors to Create Small-Molecule Cbx7 Antagonists.

      Simhadri, Chakravarthi; Daze, Kevin D; Douglas, Sarah F; Milosevich, Natalia; Monjas, Leticia; Dev, Amarjot; Brown, Tyler M; Hirsch, Anna K H; Wulff, Jeremy E; Hof, Fraser; et al. (Wiley, 2019-08-06)
      Chromobox homolog 7 (Cbx7) is an epigenetic modulator that is an important driver of multiple cancers. It is a methyl reader protein that operates by recognizing and binding to methylated lysine residues on specific partners. Herein we report our efforts to create low-molecular-weight inhibitors of Cbx7 by making rational structural adaptations to inhibitors of a different methyl reader protein, L3MBTL1, inhibitors that had previously been reported to be inactive against Cbx7. We evaluated each new inhibitor for Cbx7 inhibition by fluorescence polarization assay, and also confirmed the binding of selected inhibitors to Cbx7 by saturation-transfer difference NMR spectroscopy. This work identified multiple small-molecule inhibitors with modest (IC50 : 257-500 μm) potency.
    • Structure-Activity Relationships of 2-Sufonylpyrimidines as Quorum-Sensing Inhibitors to Tackle Biofilm Formation and eDNA Release of Pseudomonas aeruginosa.

      Thomann, Andreas; Brengel, Christian; Börger, Carsten; Kail, Dagmar; Steinbach, Anke; Empting, Martin; Hartmann, Rolf W; Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS),Saarland Universitätscampus E8.1, 66123 Saarbrücken, Germany. (2016-11-21)
      Drug-resistant Pseudomonas aeruginosa (PA) strains are on the rise, making treatment with current antibiotics ineffective. Hence, circumventing resistance or restoring the activity of antibiotics by novel approaches is of high demand. Targeting the Pseudomonas quinolone signal quorum sensing (PQS-QS) system is an intriguing strategy to abolish PA pathogenicity without affecting the viability of the pathogen. Herein we report the structure-activity relationships of 2-sulfonylpyrimidines, which were previously identified as dual-target inhibitors of the PQS receptor PqsR and the PQS synthase PqsD. The SAR elucidation was guided by a combined approach using ligand efficiency and ligand lipophilicity efficiency to select the most promising compounds. In addition, the most effective inhibitors were rationally modified by the guidance of QSAR using Hansch analyses. Finally, these inhibitors showed the capacity to decrease biofilm mass and extracellular DNA, which are important determinants for antibiotic resistance.