• Search for the Active Ingredients from a 2-Aminothiazole DMSO Stock Solution with Antimalarial Activity.

      Ropponen, Henni-Karoliina; Bader, Chantal D; Diamanti, Eleonora; Illarionov, Boris; Rottmann, Matthias; Fischer, Markus; Witschel, Matthias; Müller, Rolf; Hirsch, Anna K H; HIPS, Helmholtz-Institut für Pharmazeutische Forschung Saarland, Universitätscampus E8.1 66123 Saarbrücken, Germany. (Wiley-VCH, 2021-04-12)
      Chemical decomposition of DMSO stock solutions is a common incident that can mislead biological screening campaigns. Here, we share our case study of 2-aminothiazole 1, originating from an antimalarial class that undergoes chemical decomposition in DMSO at room temperature. As previously measured biological activities observed against Plasmodium falciparum NF54 and for the target enzyme PfIspE were not reproducible for a fresh batch, we tackled the challenge to understand where the activity originated from. Solvent- and temperature-dependent studies using HRMS and NMR spectroscopy to monitor the decomposition led to the isolation and in vitro evaluation of several fractions against PfIspE. After four days of decomposition, we successfully isolated the oxygenated and dimerised compounds using SFC purification and correlated the observed activities to them. Due to the unstable nature of the two isolates, it is likely that they undergo further decomposition contributing to the overall instability of the compound.
    • Semi-synthetic vNAR libraries screened against therapeutic antibodies primarily deliver anti-idiotypic binders.

      Könning, Doreen; Rhiel, Laura; Empting, Martin; Grzeschik, Julius; Sellmann, Carolin; Schröter, Christian; Zielonka, Stefan; Dickgießer, Stephan; Pirzer, Thomas; Yanakieva, Desislava; et al. (2017-08-29)
      Anti-idiotypic binders which specifically recognize the variable region of monoclonal antibodies have proven to be robust tools for pharmacokinetic studies of antibody therapeutics and for the development of cancer vaccines. In the present investigation, we focused on the identification of anti-idiotypic, shark-derived IgNAR antibody variable domains (vNARs) targeting the therapeutic antibodies matuzumab and cetuximab for the purpose of developing specific capturing ligands. Using yeast surface display and semi-synthetic, CDR3-randomized libraries, we identified several highly specific binders targeting both therapeutic antibodies in their corresponding variable region, without applying any counter selections during screening. Importantly, anti-idiotypic vNAR binders were not cross-reactive towards cetuximab or matuzumab, respectively, and comprised good target recognition in the presence of human and mouse serum. When coupled to magnetic beads, anti-idiotypic vNAR variants could be used as efficient capturing tools. Moreover, a two-step procedure involving vNAR-functionalized beads was employed for the enrichment of potentially bispecific cetuximab × matuzumab antibody constructs. In conclusion, semi-synthetic and CDR3-randomized vNAR libraries in combination with yeast display enable the fast and facile identification of anti-idiotypic vNAR domains targeting monoclonal antibodies primarily in an anti-idiotypic manner.
    • Serum microRNA-21 as marker for necroinflammation in hepatitis C patients with and without hepatocellular carcinoma.

      Bihrer, Verena; Waidmann, Oliver; Friedrich-Rust, Mireen; Forestier, Nicole; Susser, Simone; Haupenthal, Jörg; Welker, Martin; Shi, Ying; Peveling-Oberhag, Jan; Polta, Andreas; et al. (2011)
      MicroRNA-21 (miR-21) is up-regulated in tumor tissue of patients with malignant diseases, including hepatocellular carcinoma (HCC). Elevated concentrations of miR-21 have also been found in sera or plasma from patients with malignancies, rendering it an interesting candidate as serum/plasma marker for malignancies. Here we correlated serum miR-21 levels with clinical parameters in patients with different stages of chronic hepatitis C virus infection (CHC) and CHC-associated HCC.
    • Serum miR-122 as a biomarker of necroinflammation in patients with chronic hepatitis C virus infection.

      Bihrer, Verena; Friedrich-Rust, Mireen; Kronenberger, Bernd; Forestier, Nicole; Haupenthal, Jörg; Shi, Ying; Peveling-Oberhag, Jan; Radeke, Heinfried H; Sarrazin, Christoph; Herrmann, Eva; et al. (2011-09)
      The liver contains large amounts of microRNA-122 (miR-122), whereas other tissues contain only marginal amounts of this miRNA. MicroRNAs have also been found to circulate in the blood in a cell-free form; their potential as readily accessible disease markers is currently evaluated. Here, we investigated if the serum levels of miR-122 might be useful as disease parameter in patients with chronic hepatitis C virus (HCV) infection.
    • The Shark Strikes Twice: Hypervariable Loop 2 of Shark IgNAR Antibody Variable Domains and Its Potential to Function as an Autonomous Paratope.

      Zielonka, Stefan; Empting, Martin; Könning, Doreen; Grzeschik, Julius; Krah, Simon; Becker, Stefan; Dickgießer, Stephan; Kolmar, Harald; 2Helmholtz-Institute for Pharmaceutical Research Saarland, Saarland University, Campus C2.3, 66123 Saarbrücken, Germany. (2015-08)
      In this present study, we engineered hypervariable loop 2 (HV2) of the IgNAR variable domain in a way that it solely facilitates antigen binding, potentially functioning as an autonomous paratope. For this, the surface-exposed loop corresponding to HV2 was diversified and antigen-specific variable domain of IgNAR antibody (vNAR) molecules were isolated by library screening using yeast surface display (YSD) as platform technology. An epithelial cell adhesion molecule (EpCAM)-specific vNAR was used as starting material, and nine residues in HV2 were randomized. Target-specific clones comprising a new HV2-mediated paratope were isolated against cluster of differentiation 3ε (CD3ε) and human Fcγ while retaining high affinity for EpCAM. Essentially, we demonstrate that a new paratope comprising moderate affinities against a given target molecule can be engineered into the vNAR scaffold that acts independent of the original antigen-binding site, composed of complementarity-determining region 3 (CDR3) and CDR1.
    • Single-domain antibodies for biomedical applications.

      Krah, Simon; Schröter, Christian; Zielonka, Stefan; Empting, Martin; Valldorf, Bernhard; Kolmar, Harald; Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Saarland University, Campus C2.3, D-66123 Saarbrücken, Germany. (2016-02)
      Single-domain antibodies are the smallest antigen-binding units of antibodies, consisting either only of one variable domain or one engineered constant domain that solely facilitates target binding. This class of antibody derivatives comprises naturally occurring variable domains derived from camelids and sharks as well as engineered human variable or constant antibody domains of the heavy or light chain. Because of their high affinity and specificity as well as stability, small size and benefit of multiple re-formatting opportunities, those molecules emerged as promising candidates for biomedical applications and some of these entities have already proven to be successful in clinical development.
    • Spray-drying of inhalable, multifunctional formulations for the treatment of biofilms formed in cystic fibrosis.

      Lababidi, Nashrawan; Ofosu Kissi, Eric; Elgaher, Walid A M; Sigal, Valentin; Haupenthal, Jörg; Schwarz, Bianca C; Hirsch, Anna K H; Rades, Thomas; Schneider, Marc; HIPS, Helmholtz-Institut für Pharmazeutische Forschung Saarland, Universitätscampus E8.1 66123 Saarbrücken, Germany. (Elsevier, 2019-11-28)
      Cystic fibrosis (CF) is a serious lung disease, commonly susceptible to Pseudomonas aeruginosa colonization. The dense mucus together with biofilm formation limit drug permeability and prevent the drug from reaching the site of action, causing treatment failure of the bacterial infection. Besides the use of antibiotics, the mucolytic agent N-acetylcysteine (NAC) is recommended to be co-administered in the treatment of CF. Although several formulations have been developed for inhalation therapy to improve the pulmonary condition in CF patients, there is still no comprehensive study on a combined multifunctional dry powder formulation of antibiotics with NAC. In this work, we developed an innovative multifunctional dry powder inhaler (DPI) formulation based on salt formation between NAC and antibiotics and characterized their solid state properties and physical stability. NAC could be spray dried together with three different antibiotics, azithromycin (Azi), tobramycin (Tobra) and ciprofloxacin (Cipro), without the use of organic solvents to form Azi/NAC, Tobra/NAC and Cipro/NAC DPI formulations. Solid-state characterization of these DPI formulations showed that they were amorphous after spray drying. Azi/NAC and Tobra/NAC form co-amorphous salt systems that were physically stable under storage at stress conditions. For particle characterization, the obtained mass median aerodynamic diameters were in a suitable range for inhalation (< 5.0μm). The multifunctional antibiotic/NAC formulations conserved or improved the antibiotic susceptibility and showed promising results regarding the inhibition of P. aeruginosa PA14 biofilm formation.
    • Squalenyl Hydrogen Sulfate Nanoparticles for Simultaneous Delivery of Tobramycin and an Alkylquinolone Quorum Sensing Inhibitor Enable the Eradication of P. aeruginosa Biofilm Infections.

      Ho, Duy-Khiet; Murgia, Xabier; de Rossi, Chiara; Christmann, Rebekka; Hüfner de Mello Martins, Antonio G; Koch, Marcus; Andreas, Anastasia; Herrmann, Jennifer; Müller, Rolf; Empting, Martin; et al. (Wiley, 2020-04-03)
      Elimination of pulmonary Pseudomonas aeruginosa (PA) infections is challenging to accomplish with antibiotic therapies, mainly due to resistance mechanisms. Quorum sensing inhibitors (QSIs) interfering with biofilm formation can thus complement antibiotics. For simultaneous and improved delivery of both active agents to the infection sites, self-assembling nanoparticles of a newly synthesized squalenyl hydrogen sulfate (SqNPs) were prepared. These nanocarriers allowed for remarkably high loading capacities of hydrophilic antibiotic tobramycin (Tob) and a novel lipophilic QSI at 30 % and circa 10 %, respectively. The drug-loaded SqNPs showed improved biofilm penetration and enhanced efficacy in relevant biological barriers (mucin/human tracheal mucus, biofilm), leading to complete eradication of PA biofilms at circa 16-fold lower Tob concentration than Tob alone. This study offers a viable therapy optimization and invigorates the research and development of QSIs for clinical use.
    • Structural basis for species specific inhibition of 17β-hydroxysteroid dehydrogenase type 1 (17β-HSD1): computational study and biological validation.

      Klein, Tobias; Henn, Claudia; Negri, Matthias; Frotscher, Martin; Pharmaceutical and Medicinal Chemistry, Saarland University, Saarbrücken, Germany. (2011)
      17β-Hydroxysteroid dehydrogenase type 1 (17β-HSD1) catalyzes the reduction of estrone to estradiol, which is the most potent estrogen in humans. Inhibition of 17β-HSD1 and thereby reducing the intracellular estradiol concentration is thus a promising approach for the treatment of estrogen dependent diseases. In the past, several steroidal and non-steroidal inhibitors of 17β-HSD1 have been described but so far there is no cocrystal structure of the latter in complex with 17β-HSD1. However, a distinct knowledge of active site topologies and protein-ligand interactions is a prerequisite for structure-based drug design and optimization. An elegant strategy to enhance this knowledge is to compare inhibition values obtained for one compound toward ortholog proteins from various species, which are highly conserved in sequence and differ only in few residues. In this study the inhibitory potencies of selected members of different non-steroidal inhibitor classes toward marmoset 17β-HSD1 were determined and the data were compared with the values obtained for the human enzyme. A species specific inhibition profile was observed in the class of the (hydroxyphenyl)naphthols. Using a combination of computational methods, including homology modelling, molecular docking, MD simulation, and binding energy calculation, a reasonable model of the three-dimensional structure of marmoset 17β-HSD1 was developed and inhibition data were rationalized on the structural basis. In marmoset 17β-HSD1, residues 190 to 196 form a small α-helix, which induces conformational changes compared to the human enzyme. The docking poses suggest these conformational changes as determinants for species specificity and energy decomposition analysis highlighted the outstanding role of Asn152 as interaction partner for inhibitor binding. In summary, this strategy of comparing the biological activities of inhibitors toward highly conserved ortholog proteins might be an alternative to laborious x-ray or site-directed mutagenesis experiments in certain cases. Additionally, it facilitates inhibitor design and optimization by offering new information on protein-ligand interactions.
    • Structural basis for species specific inhibition of 17β-hydroxysteroid dehydrogenase type 1 (17β-HSD1): computational study and biological validation.

      Klein, Tobias; Henn, Claudia; Negri, Matthias; Frotscher, Martin; Pharmaceutical and Medicinal Chemistry, Saarland University, Saarbrücken, Germany. (2011)
      17β-Hydroxysteroid dehydrogenase type 1 (17β-HSD1) catalyzes the reduction of estrone to estradiol, which is the most potent estrogen in humans. Inhibition of 17β-HSD1 and thereby reducing the intracellular estradiol concentration is thus a promising approach for the treatment of estrogen dependent diseases. In the past, several steroidal and non-steroidal inhibitors of 17β-HSD1 have been described but so far there is no cocrystal structure of the latter in complex with 17β-HSD1. However, a distinct knowledge of active site topologies and protein-ligand interactions is a prerequisite for structure-based drug design and optimization. An elegant strategy to enhance this knowledge is to compare inhibition values obtained for one compound toward ortholog proteins from various species, which are highly conserved in sequence and differ only in few residues. In this study the inhibitory potencies of selected members of different non-steroidal inhibitor classes toward marmoset 17β-HSD1 were determined and the data were compared with the values obtained for the human enzyme. A species specific inhibition profile was observed in the class of the (hydroxyphenyl)naphthols. Using a combination of computational methods, including homology modelling, molecular docking, MD simulation, and binding energy calculation, a reasonable model of the three-dimensional structure of marmoset 17β-HSD1 was developed and inhibition data were rationalized on the structural basis. In marmoset 17β-HSD1, residues 190 to 196 form a small α-helix, which induces conformational changes compared to the human enzyme. The docking poses suggest these conformational changes as determinants for species specificity and energy decomposition analysis highlighted the outstanding role of Asn152 as interaction partner for inhibitor binding. In summary, this strategy of comparing the biological activities of inhibitors toward highly conserved ortholog proteins might be an alternative to laborious x-ray or site-directed mutagenesis experiments in certain cases. Additionally, it facilitates inhibitor design and optimization by offering new information on protein-ligand interactions.
    • Structure-Activity Relationship and Mode-of-Action Studies Highlight 1-(4-Biphenylylmethyl)-1H-imidazole-Derived Small Molecules as Potent CYP121 Inhibitors.

      Walter, Isabell; Adam, Sebastian; Gentilini, Maria Virginia; Kany, Andreas M; Brengel, Christian; Thomann, Andreas; Sparwasser, Tim; Köhnke, Jesko; Hartmann, Rolf W; HIPS, Helmholtz-Institut für Pharmazeutische Forschung Saarland, Universitätscampus E8.1 66123 Saarbrücken, Germany.; TWINCORE, Zentrum für experimentelle und klinische Infektionsforschung GmbH,Feodor-Lynen Str. 7, 30625 Hannover, Germany. (Wiley-VCH, 2021-05-19)
      CYP121 of Mycobacterium tuberculosis (Mtb) is an essential target for the development of novel potent drugs against tuberculosis (TB). Besides known antifungal azoles, further compounds of the azole class were recently identified as CYP121 inhibitors with antimycobacterial activity. Herein, we report the screening of a similarity-oriented library based on the former hit compound, the evaluation of affinity toward CYP121, and activity against M. bovis BCG. The results enabled a comprehensive SAR study, which was extended through the synthesis of promising compounds and led to the identification of favorable features for affinity and/or activity and hit compounds with 2.7-fold improved potency. Mode of action studies show that the hit compounds inhibit substrate conversion and highlighted CYP121 as the main antimycobacterial target of our compounds. Exemplified complex crystal structures of CYP121 with three inhibitors reveal a common binding site. Engaging in both hydrophobic interactions as well as hydrogen bonding to the sixth iron ligand, our compounds block a solvent channel leading to the active site heme. Additionally, we report the first CYP inhibitors that are able to reduce the intracellular replication of M. bovis BCG in macrophages, emphasizing their potential as future drug candidates against TB.
    • Structure-Activity Relationships of 2-Sufonylpyrimidines as Quorum-Sensing Inhibitors to Tackle Biofilm Formation and eDNA Release of Pseudomonas aeruginosa.

      Thomann, Andreas; Brengel, Christian; Börger, Carsten; Kail, Dagmar; Steinbach, Anke; Empting, Martin; Hartmann, Rolf W; Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS),Saarland Universitätscampus E8.1, 66123 Saarbrücken, Germany. (2016-11-21)
      Drug-resistant Pseudomonas aeruginosa (PA) strains are on the rise, making treatment with current antibiotics ineffective. Hence, circumventing resistance or restoring the activity of antibiotics by novel approaches is of high demand. Targeting the Pseudomonas quinolone signal quorum sensing (PQS-QS) system is an intriguing strategy to abolish PA pathogenicity without affecting the viability of the pathogen. Herein we report the structure-activity relationships of 2-sulfonylpyrimidines, which were previously identified as dual-target inhibitors of the PQS receptor PqsR and the PQS synthase PqsD. The SAR elucidation was guided by a combined approach using ligand efficiency and ligand lipophilicity efficiency to select the most promising compounds. In addition, the most effective inhibitors were rationally modified by the guidance of QSAR using Hansch analyses. Finally, these inhibitors showed the capacity to decrease biofilm mass and extracellular DNA, which are important determinants for antibiotic resistance.
    • Structure-functionality relationship and pharmacological profiles of Pseudomonas aeruginosa alkylquinolone quorum sensing modulators.

      Kamal, Ahmed A M; Petrera, Lucia; Eberhard, Jens; Hartmann, Rolf W.; Helmholtz-Institu für pharmazeutische Forschung Saarland,, Universitätscampus E8.1, 66123 Saarbrücken, Germany. (2017-05-31)
      An important paradigm in anti-infective research is the antivirulence concept. Pathoblockers are compounds which disarm bacteria of their arsenal of virulence factors. PqsR is a transcriptional regulator controlling the production of such factors in Pseudomonas aeruginosa, most prominently pyocyanin. In this work, a series of tool compounds based on the structure of the natural ligand 2-heptyl-4-quinolone (HHQ) were used for probing the structure-functionality relationship. Four different profiles are identified namely agonists, antagonists, inverse agonists and biphasic modulators. Molecular docking studies revealed that each class of the PqsR modulators showed distinctive interactions in the PqsR binding domain. It was found that the substituents in position 3 of the quinolone core act as a switch between the different profiles, according to their ability to donate or accept a hydrogen bond, or form a hydrophobic interaction. Finally, it was shown that only inverse agonists were able to strongly inhibit pyocyanin production.
    • Submicron polymeric particles prepared by vibrational spray-drying: Semisolid formulation and skin penetration/permeation studies.

      Beber, T C; Andrade, D F; Kann, B; Fontana, M C; Coradini, K; Windbergs, M; Beck, R C R; Helmholtz Centre for infection research, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2014-11)
      Topical glucocorticoids (TG) such as dexamethasone (DEX) have been used for decades for the treatment of skin diseases. However, TG present well-documented side effects and their delivery to the skin is often insufficient. Therefore, many efforts have been undergone to improve the amount of drug delivered to the skin and to reduce side effects at the same time. In this work, the feasibility of DEX-submicron polymeric particles (SP) prepared by vibrational spray-drying as an approach to overcome the challenges associated with the topical administration of this drug class was evaluated. DEX was homogeneously dispersed in the SP matrix, according to confocal Raman microscopy analysis. Drug-loaded SP were incorporated into the oil phase of oil-in-water emulsions (creams). The formulation containing polymeric submicron particles (C-SP) showed controlled drug release kinetics and a significant drug accumulation in skin compared to formulations containing non-polymeric particles or free drug. DEX accumulation in the stratum corneum was evaluated by tape stripping and a depot effect over time was observed for C-SP, while the formulation containing the free drug showed a decrease over time. Similarly, C-SP presented higher drug retention in epidermis and dermis in skin penetration studies performed on pig skin in Franz diffusion cells, while drug permeation into the receptor compartment was negligible. It was demonstrated, for the first time, the advantageous application of submicron polymeric particles obtained by vibrational spray-drying in semisolid formulations for cutaneous administration to overcome challenges related to the therapy with TG such as DEX.
    • Surface state tunable energy and mass renormalization from homothetic quantum dot arrays.

      Piquero-Zulaica, Ignacio; Li, Jun; Abd El-Fattah, Zakaria M; Solianyk, Leonid; Gallardo, Iker; Monjas, Leticia; Hirsch, Anna K H; Arnau, Andres; Ortega, J Enrique; Stöhr, Meike; et al. (Royal Society of Chemistry, 2019-12-28)
      Quantum dot arrays in the form of molecular nanoporous networks are renowned for modifying the electronic surface properties through quantum confinement. Here we show that, compared to the pristine surface state, the band bottom of the confined states can exhibit downward shifts accompanied by a lowering of the effective masses simultaneous to the appearance of tiny gaps at the Brillouin zone boundaries. We observed these effects by angle resolved photoemission for two self-assembled homothetic (scalable) Co-coordinated metal-organic networks. Complementary scanning tunneling spectroscopy measurements confirmed these findings. Electron plane wave expansion simulations and density functional theory calculations provide insight into the nature of this phenomenon, which we assign to metal-organic overlayer-substrate interactions in the form of adatom-substrate hybridization. To date, the absence of the experimental band structure resulting from single metal adatom coordinated nanoporous networks has precluded the observation of the significant surface state renormalization reported here, which we infer to be general for low interacting and well-defined adatom arrays.
    • Synthesis and aromatase inhibitory activity of some new 16E-arylidenosteroids.

      Bansal, Ranju; Thota, Sridhar; Karkra, Nalin; Minu, Maninder; Zimmer, Christina; Hartmann, Rolf W; University Institute of Pharmaceutical Sciences, Sector-14, Panjab University, Chandigarh 160 014, India. ranju29in@yahoo.co.in (2012-12)
      A new series of 16E-arylidene androstene derivatives has been synthesized and evaluated for aromatase inhibitory activity. The impact of various aryl substituents at 16 position of the steroid skeleton on aromatase inhibitory activity has been observed. The 16E-arylidenosteroids 6, 10 and 11 exhibited significant inhibition of the aromatase enzyme. 16-(4-Pyridylmethylene)-4-androstene-3,17-dione (6, IC(50): 5.2 μM) and 16-(benzo-[1,3]dioxol-5-ylmethylene)androsta-1,4-diene-3,17-dione (11, IC(50): 6.4 μM) were found to be approximately five times more potent in comparison to aminoglutethimide.
    • Synthesis and Biological Evaluation of Novel 2-Substituted ­Analogues of (-)-Pentenomycin i

      Zisopoulou, Stavroula A.; Bousis, Spyridon; Haupenthal, Jörg; Herrmann, Jennifer; Müller, Rolf; Hirsch, Anna K.H.; Komiotis, Dimitri; Gallos, John K.; Stathakis, Christos I.; HIPS, Helmholtz-Institut für Pharmazeutische Forschung Saarland, Universitätscampus E8.1 66123 Saarbrücken, Germany. (Thieme, 2020-03-17)
      A library of novel 2-substituted derivatives of the antibiotic natural product pentenomycin I is presented. The new collection of analogues is divided in two main classes, 2-alkynyl- and 2-aryl- derivatives, which are accessed by the appropriate type of palladium-catalyzed cross-coupling reaction of the 2-iodo-protected pentenomycin I with suitable nucleophiles. The new derivatives were tested for their activity against certain types of bacteria and one of them, compound 8h, was found to exhibit significant inhibitory activity against several Gram-positive bacteria but also displayed cytotoxic activity against eukaryotic cell lines.
    • Synthesis and Biological Evaluation of Spiro-δ-lactones as Inhibitors of 17β-Hydroxysteroid Dehydrogenase Type 2 (17β-HSD2)

      Xu, Kuiying; Wetzel, Marie; W. Hartmann, Rolf; Marchais-Oberwinkler, Sandrine (2012-01-06)
    • Synthesis and biological evaluation of thieno[3,2-d]- pyrimidinones, thieno[3,2-d]pyrimidines and quinazolinones: conformationally restricted 17b-hydroxysteroid dehydrogenase type 2 (17b-HSD2) inhibitors.

      Perspicace, Enrico; Marchais-Oberwinkler, Sandrine; Hartmann, Rolf W; Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C23, D-66123 Saarbrücken, Germany. (2013)
      In this study, a series of conformationally restricted thieno[3,2-d]pyrimidinones, thieno[3,2-d]pyrimidines and quinazolinones was designed and synthesized with the goal of improving the biological activity as 17b-hydroxysteroid dehydrogenase type 2 inhibitors of the corresponding amidothiophene derivatives. Two moderately active compounds were discovered and this allowed the identification of the biologically active open conformer as well as the extension of the enzyme binding site characterisation.
    • Synthetic studies of cystobactamids as antibiotics and bacterial imaging carriers lead to compounds with high: In vivo efficacy

      Testolin, Giambattista; Cirnski, Katarina; Rox, Katharina; Prochnow, Hans; Fetz, Verena; Grandclaudon, Charlotte; Mollner, Tim; Baiyoumy, Alain; Ritter, Antje; Leitner, Christian; et al. (RSC, 2020-01-01)
      There is an alarming scarcity of novel chemical matter with bioactivity against multidrug-resistant Gram-negative bacterial pathogens. Cystobactamids, recently discovered natural products from myxobacteria, are an exception to this trend. Their unusual chemical structure, composed of oligomeric para-aminobenzoic acid moieties, is associated with a high antibiotic activity through the inhibition of gyrase. In this study, structural determinants of cystobactamid's antibacterial potency were defined at five positions, which were varied using three different synthetic routes to the cystobactamid scaffold. The potency against Acinetobacter baumannii could be increased ten-fold to an MIC (minimum inhibitory concentration) of 0.06 μg mL−1, and the previously identified spectrum gap of Klebsiella pneumoniae could be closed compared to the natural products (MIC of 0.5 μg mL−1). Proteolytic degradation of cystobactamids by the resistance factor AlbD was prevented by an amide-triazole replacement. Conjugation of cystobactamid's N-terminal tetrapeptide to a Bodipy moiety induced the selective localization of the fluorophore for bacterial imaging purposes. Finally, a first in vivo proof of concept was obtained in an E. coli infection mouse model, where derivative 22 led to the reduction of bacterial loads (cfu, colony-forming units) in muscle, lung and kidneys by five orders of magnitude compared to vehicle-treated mice. These findings qualify cystobactamids as highly promising lead structures against infections caused by Gram-positive and Gram-negative bacterial pathogens.