• Cystobactamid 507: Concise Synthesis, Mode of Action and Optimization toward More Potent Antibiotics.

      Elgaher, Walid A M; Hamed, Mostafa M; Baumann, Sascha; Herrmann, Jennifer; Siebenbürger, Lorenz; Krull, Jana; Cirnski, Katarina; Kirschning, Andreas; Brönstrup, Mark; Müller, Rolf; et al. (Wiley-VCH, 2020-01-26)
      Lack of new antibiotics and increasing antimicrobial resistance are the main concerns of healthcare community nowadays, which necessitate the search for novel antibacterial agents. Recently, we discovered the cystobactamids - a novel natural class of antibiotics with broad-spectrum antibacterial activity. In this work, we describe a concise total synthesis of cystobactamid 507, the identification of the bioactive conformation using non-covalently bonded rigid analogs, the first structure–activity relationship (SAR) study for cystobactamid 507 leading to new analogs with high metabolic stability, superior topoisomerase IIA inhibition, antibacterial activity and, importantly, stability toward the resistant factor AlbD. Deeper insight into the mode of action revealed that the cystobactamids employ DNA minor groove binding as part of the drug–target interaction without showing significant intercalation. By designing a new analog of cystobactamid 919-2 we finally demonstrated that these findings could be further exploited to obtain more potent hexapeptides against Gram-negative bacteria.
    • Delivery system for budesonide based on lipid-DNA.

      Liu, Yun; Bos, I Sophie T; Oenema, Tjitske A; Meurs, Herman; Maarsingh, Harm; Hirsch, Anna K H; HIPS, Helmholtz-Institut für pharmazeutische Forschung Saarland, Universitätscampus 8.1, 66123 Saarbrücken, Germany. (2018-09-01)
      Budesonide is a hydrophobic glucocorticoid with high anti-inflammatory activity for the treatment of asthma, inflammatory bowel disease and rheumatoid arthritis. A micellar drug-delivery system based on lipid-DNA may provide a strategy to maximize its drug efficacy and reduce adverse effects. In this work, we report the use of lipid-DNAA (UU11mer), featuring two hydrophobic alkyl chains and forming micelles at a comparatively low critical micelle concentration, to render budesonide water-soluble with a high loading capacity (LC). The inhibition of interleukin-8 (IL-8) release shows that the new delivery system retains the inhibitory activity in cell-based assays. In conclusion, this research provides a novel approach to formulate and administer budesonide in a non-invasive manner, which dramatically improves its water-solubility while retaining its bioavailability.
    • Design and synthesis of a library of lead-like 2,4-bisheterocyclic substituted thiophenes as selective Dyrk/Clk inhibitors.

      Schmitt, Christian; Kail, Dagmar; Mariano, Marica; Empting, Martin; Weber, Nadja; Paul, Tamara; Hartmann, Rolf W.; Engel, Matthias; Helmholtz Institute für Pharmazeutische Forschung Saarland, Universitätscampus E8.1, 66123 Saarbrücken, Germany. (2014)
      The Dyrk family of protein kinases is implicated in the pathogenesis of several diseases, including cancer and neurodegeneration. Pharmacological inhibitors were mainly described for Dyrk1A so far, but in fewer cases for Dyrk1B, Dyrk2 or other isoforms. Herein, we report the development and optimization of 2,4-bisheterocyclic substituted thiophenes as a novel class of Dyrk inhibitors. The optimized hit compounds displayed favorable pharmacokinetic properties and high ligand efficiencies, and inhibited Dyrk1B in intact cells. In a larger selectivity screen, only Clk1 and Clk4 were identified as additional targets of compound 48, but no other kinases frequently reported as off-targets. Interestingly, Dyrk1A is implicated in the regulation of alternative splicing, a function shared with Clk1/Clk4; thus, some of the dual inhibitors might be useful as efficient splicing modulators. A further compound (29) inhibited Dyrk1A and 1B with an IC50 of 130 nM, showing a moderate selectivity over Dyrk2. Since penetration of the central nervous system (CNS) seems possible based on the physicochemical properties, this compound might serve as a lead for the development of potential therapeutic agents against glioblastoma. Furthermore, an inhibitor selective for Dyrk2 (24) was also identified, which might be are suitable as a pharmacological tool to dissect Dyrk2 isoform-mediated functions.
    • Design and Synthesis of Bioisosteres of Acylhydrazones as Stable Inhibitors of the Aspartic Protease Endothiapepsin.

      Jumde, Varsha R; Mondal, Milon; Gierse, Robin M; Unver, M Yagiz; Magari, Francesca; van Lier, Roos C W; Heine, Andreas; Klebe, Gerhard; Hirsch, Anna K H; HIPS, Helmholtz-Institut für Pharmazeutische Forschung Saarland, Universitätscampus E8.1 66123 Saarbrücken, Germany. (Elsevier, 2018-11-06)
      Acylhydrazone-based dynamic combinatorial chemistry (DCC) is a powerful strategy for the rapid identification of novel hits. Even though acylhydrazones are important structural motifs in medicinal chemistry, their further progression in development may be hampered by major instability and potential toxicity under physiological conditions. It is therefore of paramount importance to identify stable replacements for acylhydrazone linkers. Herein, we present the first report on the design and synthesis of stable bioisosteres of acylhydrazone-based inhibitors of the aspartic protease endothiapepsin as a follow-up to a DCC study. The most successful bioisostere is equipotent, bears an amide linker, and we confirmed its binding mode by X-ray crystallography. Having some validated bioisosteres of acylhydrazones readily available might accelerate hit-to-lead optimization in future acylhydrazone-based DCC projects.
    • Design, synthesis and evaluation of novel 16-imidazolyl substituted steroidal derivatives possessing potent diversified pharmacological properties.

      Bansal, Ranju; Guleria, Sheetal; Thota, Sridhar; Bodhankar, Subhash L; Patwardhan, Moreshwar R; Zimmer, Christina; Hartmann, Rolf W; Harvey, Alan L; University Institute of Pharmaceutical Sciences, Sector-14, Panjab University, Chandigarh 160014, India. ranju29in@yahoo.co.in (2012-05)
      As a part of our investigations into the structural-activity relationship studies of a novel class of medicinally active 16-substituted steroids, several new 16-imidazolyl substituted steroidal derivatives have been synthesized and pharmacologically evaluated in the current study. The new steroidal analogues 5, 6, 8, 9, 11 and 12 exhibited moderate cytotoxic effects in sixty cancer cell lines derived from nine cancers types. The imidazolyl substituted steroidal derivatives 6 (DPJ-RG-1241) and 7 (RB-401) were obtained as the powerful inhibitors of aromatase with IC50=0.18 μM and IC50=0.168 μM, respectively, approximately 1.2 and 1.4 times more potent in comparison to standard drug exemestane. The bis-quaternary steroids 13 and 14 displayed potent skeletal muscle relaxant properties. An affinity constant of 0.007 μM was observed for compound 14 on frog rectus abdominis muscle preparation and 13 displayed a very high anticholinesterase activity K(i)=25 nM, approximately 115-fold higher in comparison to standard drug galanthamine (K(i)=2.9 μM).
    • Development and validation of a UHPLC-MS/MS procedure for quantification of the Pseudomonas Quinolone Signal in bacterial culture after acetylation for characterization of new quorum sensing inhibitors.

      Maurer, Christine K; Steinbach, Anke; Hartmann, Rolf W; Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Campus C2.3, D-66123 Saarbrücken, Germany. Electronic address: christine.maurer@helmholtz-hzi.de. (2013-12)
      The appearance of antibiotic resistance requires novel therapeutic strategies. One approach is to selectively attenuate bacterial pathogenicity by interfering with bacterial cell-to-cell communication known as quorum sensing. The PQS quorum sensing system of Pseudomonas aeruginosa employs as signal molecule the Pseudomonas Quinolone Signal (PQS; 2-heptyl-3-hydroxy-4-(1H)-quinolone), a key contributor to virulence and biofilm formation. Thus, interference with PQS production is considered as promising approach for the development of novel anti-infectives. Therefore, in this study, we developed and validated an ultra-high performance liquid chromatographic-tandem mass spectrometric approach for reliable quantification of PQS in P. aeruginosa cultures for activity determination of new quorum sensing inhibitors. The poor chromatographic properties of PQS reported by others could be overcome by fast microwave-assisted acetylation. The validation procedure including matrix effects, recovery, process efficiency, selectivity, carry-over, accuracy and precision, stability of the processed sample, and limit of quantification demonstrated that the method fulfilled all requirements of common validation guidelines. Its applicability was successfully proven in routine testing. In addition, two-point calibration was shown to be applicable for fast and reliable PQS quantification saving time and resources. In summary, the described method provides a powerful tool for the discovery of new quorum sensing inhibitors as potential anti-infectives and illustrated the usefulness of chemical derivatization, acetylation, in liquid chromatography-mass spectrometry analysis.
    • Differential Stability of Cell-Free Circulating microRNAs: Implications for Their Utilization as Biomarkers.

      Köberle, Verena; Pleli, Thomas; Schmithals, Christian; Augusto Alonso, Eduardo; Haupenthal, Jörg; Bönig, Halvard; Peveling-Oberhag, Jan; Biondi, Ricardo M; Zeuzem, Stefan; Kronenberger, Bernd; et al. (2013)
      MicroRNAs circulating in the blood, stabilized by complexation with proteins and/or additionally by encapsulation in lipid vesicles, are currently being evaluated as biomarkers. The consequences of their differential association with lipids/vesicles for their stability and use as biomarkers are largely unexplored and are subject of the present study.
    • Direct antiproliferative effect of nonsteroidal 17β-hydroxysteroid dehydrogenase type 1 inhibitors in vitro.

      Berényi, Agnes; Frotscher, Martin; Marchais-Oberwinkler, Sandrine; Hartmann, Rolf W; Minorics, Renáta; Ocsovszki, Imre; Falkay, George; Zupkó, István; Department of Pharmacodynamics and Biopharmacy, University of Szeged , Szeged , Hungary. (2013-08)
      Inhibition of the local formation of estrogens seems to be an attractive strategy for pharmacological intervention in hormone-dependent disorders. The direct antiproliferative properties of ten nonsteroidal 17β-hydroxysteroid dehydrogenase type 1 (17β-HSD1) inhibitors were investigated on human cancer cell lines of gynecological origin. The mechanism of the antiproliferative action was approximated by cell cycle analysis, fluorescent microscopy, BrdU assay, determination of caspase-3 activity and quantification of the expression of cell cycle regulators at mRNA level. Treatment of HeLa cells with some of the compounds resulted in a concentration-dependent inhibition of the G1-S transition and an increase in the apoptotic population. The most effective agents increased the expression of tumor suppressors p21 and p53, while CDK2 and Rb were down-regulated. The reported anticancer actions of the tested compounds are independent of the 17β-HSD1-inhibiting capacity. These results indicate that it is possible to combine direct antiproliferative activity and 17β-HSD1 inhibition resulting in novel agents with dual mode of action.
    • Directing Drugs to Bugs: Antibiotic-Carbohydrate Conjugates Targeting Biofilm-Associated Lectins of Pseudomonas aeruginosa .

      Meiers, Joscha; Zahorska, Eva; Röhrig, Teresa; Hauck, Dirk; Wagner, Stefanie; Titz, Alexander; HIPS, Helmholtz-Institut für Pharmazeutische Forschung Saarland, Universitätscampus E8.1 66123 Saarbrücken, Germany. (ACS, 2020-10-02)
      Chronic infections by Pseudomonas aeruginosa are characterized by biofilm formation, which effectively enhances resistance toward antibiotics. Biofilm-specific antibiotic delivery could locally increase drug concentration to break antimicrobial resistance and reduce the drug's peripheral side effects. Two extracellular P. aeruginosa lectins, LecA and LecB, are essential structural components for biofilm formation and thus render a possible anchor for biofilm-targeted drug delivery. The standard-of-care drug ciprofloxacin suffers from severe systemic side effects and was therefore chosen for this approach. We synthesized several ciprofloxacin-carbohydrate conjugates and established a structure-activity relationship. Conjugation of ciprofloxacin to lectin probes enabled biofilm accumulation in vitro, reduced the antibiotic's cytotoxicity, but also reduced its antibiotic activity against planktonic cells due to a reduced cell permeability and on target activity. This work defines the starting point for new biofilm/lectin-targeted drugs to modulate antibiotic properties and ultimately break antimicrobial resistance.
    • Discovery and Structure-Based Optimization of 2-Ureidothiophene-3-carboxylic Acids as Dual Bacterial RNA Polymerase and Viral Reverse Transcriptase Inhibitors.

      Elgaher, Walid A M; Sharma, Kamal K; Haupenthal, Jörg; Saladini, Francesco; Pires, Manuel; Real, Eleonore; Mély, Yves; Hartmann, Rolf W; Helmholtz Centre for infection research, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2016-07-07)
      We are concerned with the development of novel anti-infectives with dual antibacterial and antiretroviral activities for MRSA/HIV-1 co-infection. To achieve this goal, we exploited for the first time the mechanistic function similarity between the bacterial RNA polymerase (RNAP) "switch region" and the viral non-nucleoside reverse transcriptase inhibitor (NNRTI) binding site. Starting from our previously discovered RNAP inhibitors, we managed to develop potent RT inhibitors effective against several resistant HIV-1 strains with maintained or enhanced RNAP inhibitory properties following a structure-based design approach. A quantitative structure-activity relationship (QSAR) analysis revealed distinct molecular features necessary for RT inhibition. Furthermore, mode of action (MoA) studies revealed that these compounds inhibit RT noncompetitively, through a new mechanism via closing of the RT clamp. In addition, the novel RNAP/RT inhibitors are characterized by a potent antibacterial activity against S. aureus and in cellulo antiretroviral activity against NNRTI-resistant strains. In HeLa and HEK 293 cells, the compounds showed only marginal cytotoxicity.
    • Discovery of a Potent Inhibitor Class with High Selectivity toward Clostridial Collagenases.

      Schönauer, Esther; Kany, Andreas M; Haupenthal, Jörg; Hüsecken, Kristina; Hoppe, Isabel J; Voos, Katrin; Yahiaoui, Samir; Elsässer, Brigitta; Ducho, Christian; Brandstetter, Hans; et al. (2017-09-13)
      Secreted virulence factors like bacterial collagenases are conceptually attractive targets for fighting microbial infections. However, previous attempts to develop potent compounds against these metalloproteases failed to achieve selectivity against human matrix metalloproteinases (MMPs). Using a surface plasmon resonance-based screening complemented with enzyme inhibition assays, we discovered an N-aryl mercaptoacetamide-based inhibitor scaffold that showed sub-micromolar affinities toward collagenase H (ColH) from the human pathogen Clostridium histolyticum. Moreover, these inhibitors also efficiently blocked the homologous bacterial collagenases, ColG from C. histolyticum, ColT from C. tetani, and ColQ1 from the Bacillus cereus strain Q1, while showing negligible activity toward human MMPs-1, -2, -3, -7, -8, and -14. The most active compound displayed a more than 1000-fold selectivity over human MMPs. This selectivity can be rationalized by the crystal structure of ColH with this compound, revealing a distinct non-primed binding mode to the active site. The non-primed binding mode presented here paves the way for the development of selective broad-spectrum bacterial collagenase inhibitors with potential therapeutic application in humans.
    • Discovery of antagonists of PqsR, a key player in 2-alkyl-4-quinolone-dependent quorum sensing in Pseudomonas aeruginosa.

      Lu, Cenbin; Kirsch, Benjamin; Zimmer, Christina; de Jong, Johannes C; Henn, Claudia; Maurer, Christine K; Müsken, Mathias; Häussler, Susanne; Steinbach, Anke; Hartmann, Rolf W; et al. (2012-03-23)
      The pqs quorum sensing communication system of Pseudomonas aeruginosa controls virulence factor production and is involved in biofilm formation, therefore playing an important role for pathogenicity. In order to attenuate P. aeruginosa pathogenicity, we followed a ligand-based drug design approach and synthesized a series of compounds targeting PqsR, the receptor of the pqs system. In vitro evaluation using a reporter gene assay in Escherichia coli led to the discovery of the first competitive PqsR antagonists, which are highly potent (K(d,app) of compound 20: 7 nM). These antagonists are able to reduce the production of the virulence factor pyocyanin in P. aeruginosa. Our finding offers insights into the ligand-receptor interaction of PqsR and provides a promising starting point for further drug design.
    • Discovery of new 7-substituted-4-imidazolylmethyl coumarins and 4'-substituted-2-imidazolyl acetophenones open analogues as potent and selective inhibitors of steroid-11β-hydroxylase.

      Stefanachi, Angela; Hanke, Nina; Pisani, Leonardo; Leonetti, Francesco; Nicolotti, Orazio; Catto, Marco; Cellamare, Saverio; Hartmann, Rolf W; Carotti, Angelo; Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), PO Box 15 11 50, D-66041 Saarbrücken, Germany. (2015-01-07)
      Diseases triggered by an abnormally high level of cortisol (hypercortisolism), such as the Cushing's and metabolic syndromes, could be successfully tackled by inhibitors of CYP11B1, a steroidal cytochrome P450 enzyme that catalyzes the last hydroxylation step of the cortisol biosynthesis. Structural optimization of 7-(benzyloxy)-4-(1H-imidazol-1-ylmethyl)-2H-chromen-2-one 2, a selective aromatase inhibitor, afforded the 4-(1H-imidazol-1-ylmethyl)-7-{[3-(trifluoromethoxy)benzyl]oxy}-2H-chromen-2-one 7, with improved inhibitory potency at human CYP11B1 (IC50 = 5 nM) and an enhanced selectivity over human CYP11B2 (SIB = 25) compared to lead compound 2 (IC50 = 72 nM, SIB = 4.0) and metyrapone (IC50 = 15 nM, SIB = 4.8), a non-selective drug used in the therapy of the Cushing's syndrome. Structure-activity relationship studies allowed the design and optimization of a novel series of potent and selective compounds, that can be regarded as open analogues of 2H-chromen-2-one derivatives. Compound 23, 2-(1H-imidazol-1-yl)-1-(4-{[3(trifluoromethoxy)benzyl]oxy}phenyl) ethanone, was the most interesting inhibitor of the series displaying a high potency at CYP11B1 (IC50 = 15 nM), increased selectivities over CYP11B2 (SIB = 33), CYP19 (SIB = 390) and CYP17 (5% inhibition at 2.5 μM concentration).
    • Discovery of Novel Latency-Associated Nuclear Antigen Inhibitors as Antiviral Agents Against Kaposi's Sarcoma-Associated Herpesvirus.

      Kirsch, Philine; Jakob, Valentin; Elgaher, Walid A M; Walt, Christine; Oberhausen, Kevin; Schulz, Thomas F; Empting, Martin; HIPS, Helmholtz-Institut für Pharmazeutische Forschung Saarland, Universitätscampus E8.1 66123 Saarbrücken, Germany.;HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (American Chemical Society (ACS), 2020-01-24)
      With the aim to develop novel antiviral agents against Kaposi's Sarcoma Herpesvirus (KSHV), we are targeting the latency-associated nuclear antigen (LANA). This protein plays an important role in viral genome maintenance during latent infection. LANA has the ability to tether the viral genome to the host nucleosomes and, thus, ensures latent persistence of the viral genome in the host cells. By inhibition of the LANA-DNA interaction, we seek to eliminate or reduce the load of the viral DNA in the host. To achieve this goal, we screened our in-house library using a dedicated fluorescence polarization (FP)-based competition assay, which allows for the quantification of LANA-DNA-interaction inhibition by small organic molecules. We successfully identified three different compound classes capable of disrupting this protein-nucleic acid interaction. We characterized these compounds by IC50 dose-response evaluation and confirmed the compound-LANA interaction using surface plasmon resonance (SPR) spectroscopy. Furthermore, two of the three hit scaffolds showed only marginal cytotoxicity in two human cell lines. Finally, we conducted STD-NMR competition experiments with our new hit compounds and a previously described fragment-sized inhibitor. Based on these results, future compound linking approaches could serve as a promising strategy for further optimization studies in order to generate highly potent KSHV inhibitors.
    • Discovery of Small-Molecule Stabilizers of 14-3-3 Protein-Protein Interactions via Dynamic Combinatorial Chemistry.

      Hartman, Alwin M; Elgaher, Walid A M; Hertrich, Nathalie; Andrei, Sebastian A; Ottmann, Christian; Hirsch, Anna K H; HIPS, Helmholtz-Institut für Pharmazeutische Forschung Saarland, Universitätscampus E8.1 66123 Saarbrücken, Germany. (American Chemical Society (ACS), 2020-02-28)
      Protein-protein interactions (PPIs) play an important role in numerous biological processes such as cell-cycle regulation and multiple diseases. The family of 14-3-3 proteins is an attractive target as they serve as binding partner to various proteins and are therefore capable of regulating their biological activities. Discovering small-molecule modulators, in particular stabilizers, of such complexes via traditional screening approaches is a challenging task. Herein, we pioneered the first application of dynamic combinatorial chemistry (DCC) to a PPI target, to find modulators of 14-3-3 proteins. Evaluation of the amplified hits from the DCC experiments for their binding affinity via surface plasmon resonance (SPR), revealed that the low-micromolar (KD 15-16 μM) acylhydrazones are 14-3-3/synaptopodin PPI stabilizers. Thus, DCC appears to be ideally suited for the discovery of not only modulators but even the more elusive stabilizers of notoriously challenging PPIs.
    • Discovery of the first small-molecule CsrA-RNA interaction inhibitors using biophysical screening technologies.

      Maurer, Christine K; Fruth, Martina; Empting, Martin; Avrutina, Olga; Hoßmann, Jörn; Nadmid, Suvd; Gorges, Jan; Herrmann, Jennifer; Kazmaier, Uli; Dersch, Petra; et al. (2016-06)
      CsrA is a global post-transcriptional regulator protein affecting mRNA translation and/or stability. Widespread among bacteria, it is essential for their full virulence and thus represents a promising anti-infective drug target. Therefore, we aimed at the discovery of CsrA-RNA interaction inhibitors. Results & methodology: We followed two strategies: a screening of small molecules (A) and an RNA ligand-based approach (B). Using surface plasmon resonance-based binding and fluorescence polarization-based competition assays, (A) yielded seven small-molecule inhibitors, among them MM14 (IC50 of 4 µM). (B) resulted in RNA-based inhibitor GGARNA (IC50 of 113 µM).
    • Drifting of heme-coordinating group in imidazolylmethylxanthones leading to improved selective inhibition of CYP11B1.

      Gobbi, Silvia; Hu, Qingzhong; Zimmer, Christina; Belluti, Federica; Rampa, Angela; Hartmann, Rolf W.; Bisi, Alessandra; HIPS, Helmholtz Institut für pharmazeutische Forschung Saarland, Universitätscampus E8.1, 66123 Saarbrücken, Germany. (2017-08-02)
      An abnormal increase in glucocorticoid levels is responsible for pathological disorders affecting different organs and systems, and the selective inhibition of appropriate steroidogenic enzymes represents a validated strategy to restore their physiological levels. In continuing our studies on CYP11B inhibitors, in this paper a small series of 6-substituted 3-imidazolylmethylxanthones was designed and synthesized, according to the data acquired from previously reported series of derivatives and from a purposely-performed docking study. The new compounds proved to be potent inhibitors of CYP11B isoforms, being effective on CYP11B1 in the low nanomolar range and improving selectivity with respect to CYP11B2, compared to previously reported related compounds. These data further confirmed that a suitable mutual arrangement of the imidazolylmethyl pharmacophore and a properly selected substituent on the xanthone core allows a fine tuning of the activity towards the different CYPs and further corroborate the role of the xanthone scaffold as a privileged structure in this field.
    • Dynamic Combinatorial Chemistry to Identify Binders of ThiT, an S-Component of the Energy-Coupling Factor Transporter for Thiamine.

      Monjas, Leticia; Swier, Lotteke J Y M; Setyawati, Inda; Slotboom, Dirk J; Hirsch, Anna K H; Helmholtz-Institut für pharmazeutische Forschung Saarland, Universitätscampus E9.1, 66123 Saarbrücken, Germany. (2017-10-20)
      We applied dynamic combinatorial chemistry (DCC) to identify ligands of ThiT, the S-component of the energy-coupling factor (ECF) transporter for thiamine in Lactococcus lactis. We used a pre-equilibrated dynamic combinatorial library (DCL) and saturation-transfer difference (STD) NMR spectroscopy to identify ligands of ThiT. This is the first report in which DCC is used for fragment growing to an ill-defined pocket, and one of the first reports for its application with an integral membrane protein as target.
    • Dynamic Proteoids Generated From Dipeptide-Based Monomers.

      Liu, Yun; Stuart, Marc C A; Buhler, Eric; Hirsch, Anna K H; HIPS, Helmholtz-Institut für pharmazeutische Forschung Saarland, Universitätscampus 8.1, 66123 Saarbrücken, Germany. (2018-05-28)
      Dynamic proteoids are dynamic covalent analogues of proteins which are generated through the reversible polymerization of amino-acid- or peptide-derived monomers. The authors design and prepare a series of dynamic proteoids based on the reversible polycondensation of six types of dipeptide hydrazides bearing different categories of side chains. The polymerization and structures of biodynamers generated by
    • Energy‐Coupling Factor Transporters as Novel Antimicrobial Targets

      Bousis, Spyridon; Diamanti, Eleonora; Slotboom, Dirk J.; Hirsch, Anna K. H.; HIPS, Helmholtz-Institut für Pharmazeutische Forschung Saarland, Universitätscampus E8.1 66123 Saarbrücken, Germany. (Wiley-Blackwell, 2019-02)
      In an attempt to find new antibiotics, novel ways of interfering with important biological functions should be explored, especially with those which are necessary or even irreplaceable for bacterial survival, growth, and virulence. The purpose of this review is to highlight B‐type vitamin transporters from the energy‐coupling factor (ECF) family, which are not present in humans, as potential antimicrobial targets. In addition, a druggability analysis of an ECF transporter for folic acid and sequence‐conservation studies in seven prominent pathogens revealed new druggable pockets. Evaluation of the presence of de novo biosynthetic routes for the vitamins in question in the seven pathogens confirmed that this target class holds promise for the discovery of antimicrobial drugs with a new mechanism of action, possibly on a broad‐spectrum level.