• Non-active site mutants of HIV-1 protease influence resistance and sensitisation towards protease inhibitors.

      Bastys, Tomas; Gapsys, Vytautas; Walter, Hauke; Heger, Eva; Doncheva, Nadezhda T; Kaiser, Rolf; de Groot, Bert L; Kalinina, Olga V; HIPS, Helmholtz-Institut für Pharmazeutische Forschung Saarland, Universitätscampus E8.1 66123 Saarbrücken, Germany. (BMC, 2020-05-19)
      Background: HIV-1 can develop resistance to antiretroviral drugs, mainly through mutations within the target regions of the drugs. In HIV-1 protease, a majority of resistance-associated mutations that develop in response to therapy with protease inhibitors are found in the protease's active site that serves also as a binding pocket for the protease inhibitors, thus directly impacting the protease-inhibitor interactions. Some resistance-associated mutations, however, are found in more distant regions, and the exact mechanisms how these mutations affect protease-inhibitor interactions are unclear. Furthermore, some of these mutations, e.g. N88S and L76V, do not only induce resistance to the currently administered drugs, but contrarily induce sensitivity towards other drugs. In this study, mutations N88S and L76V, along with three other resistance-associated mutations, M46I, I50L, and I84V, are analysed by means of molecular dynamics simulations to investigate their role in complexes of the protease with different inhibitors and in different background sequence contexts. Results: Using these simulations for alchemical calculations to estimate the effects of mutations M46I, I50L, I84V, N88S, and L76V on binding free energies shows they are in general in line with the mutations' effect on [Formula: see text] values. For the primary mutation L76V, however, the presence of a background mutation M46I in our analysis influences whether the unfavourable effect of L76V on inhibitor binding is sufficient to outweigh the accompanying reduction in catalytic activity of the protease. Finally, we show that L76V and N88S changes the hydrogen bond stability of these residues with residues D30/K45 and D30/T31/T74, respectively. Conclusions: We demonstrate that estimating the effect of both binding pocket and distant mutations on inhibitor binding free energy using alchemical calculations can reproduce their effect on the experimentally measured [Formula: see text] values. We show that distant site mutations L76V and N88S affect the hydrogen bond network in the protease's active site, which offers an explanation for the indirect effect of these mutations on inhibitor binding. This work thus provides valuable insights on interplay between primary and background mutations and mechanisms how they affect inhibitor binding.
    • Novel 15-Lipoxygenase-1 Inhibitor Protects Macrophages from Lipopolysaccharide-Induced Cytotoxicity.

      Guo, Hao; Verhoek, Iris C; Prins, Gerian G H; van der Vlag, Ramon; van der Wouden, Petra E; van Merkerk, Ronald; Quax, Wim J; Olinga, Peter; Hirsch, Anna K H; Dekker, Frank J; et al. (ACS, 2019-04-19)
      Various mechanisms for regulated cell death include the formation of oxidative mediators such as lipid peroxides and nitric oxide (NO). In this respect, 15-lipoxygenase-1 (15-LOX-1) is a key enzyme that catalyzes the formation of lipid peroxides. The actions of these peroxides are interconnected with nuclear factor-κB signaling and NO production. Inhibition of 15-LOX-1 holds promise to interfere with regulated cell death in inflammatory conditions. In this study, a novel potent 15-LOX-1 inhibitor, 9c (i472), was developed and structure-activity relationships were explored. In vitro, this inhibitor protected cells from lipopolysaccharide-induced cell death, inhibiting NO formation and lipid peroxidation. Thus, we provide a novel 15-LOX-1 inhibitor that inhibits cellular NO production and lipid peroxidation, which set the stage for further exploration of these mechanisms.
    • Novel 2,4-disubstituted quinazoline analogs as antibacterial agents with improved cytotoxicity profile: Modification of the benzenoid part.

      Megahed, Sarah H; Rasheed, Sari; Herrmann, Jennifer; El-Hossary, Ebaa M; El-Shabrawy, Yahia I; Abadi, Ashraf H; Engel, Matthias; Müller, Rolf; Abdel-Halim, Mohammad; Hamed, Mostafa M; et al. (Elsevier Ltd., 2022-01-07)
      Bacterial resistance to currently used antibiotics demands the development of novel antibacterial agents with good safety margins and sufficient efficacy against multi-drug resistant isolates. We have previously described the synthesis of N-butyl-2-(butylthio)quinazolin-4-amine (I) as an optimized hit with broad-spectrum antibacterial activity and low cytotoxicity. In addition, we have identified a potential growing vector for this series of compounds. Herein, we describe further hit optimization which includes systematic diversifications of both the benzenoid part and the substituents at position 6 and 7 of compound I. Growing of the molecule beside the core modifications yielded several compounds with remarkable anti(myco)bacterial activity against a panel of pathogenic bacteria, including drug-resistant strains. Compound 12 showed a 2-4 fold improvement in activity than I against S. aureus Newman, S. pneumoniae DSM-20566 and E. faecalis DSM-20478. The compounds also showed a good safety profile towards human HepG2 cells.
    • Novel Compounds Targeting the RNA-Binding Protein HuR. Structure-Based Design, Synthesis, and Interaction Studies.

      Della Volpe, Serena; Nasti, Rita; Queirolo, Michele; Unver, M Yagiz; Jumde, Varsha K; Dömling, Alexander; Vasile, Francesca; Potenza, Donatella; Ambrosio, Francesca Alessandra; Costa, Giosué; et al. (ACS, 2019-01-21)
      The key role of RNA-binding proteins (RBPs) in regulating post-transcriptional processes and their involvement in several pathologies (i.e., cancer and neurodegeneration) have highlighted their potential as therapeutic targets. In this scenario, Embryonic Lethal Abnormal Vision (ELAV) or Hu proteins and their complexes with target mRNAs have been gaining growing attention. Compounds able to modulate the complex stability could constitute an innovative pharmacological strategy for the treatment of numerous diseases. Nevertheless, medicinal-chemistry efforts aimed at developing such compounds are still at an early stage. As part of our ongoing research in this field, we hereby present the rational design and synthesis of structurally novel HuR ligands, potentially acting as HuR-RNA interferers. The following assessment of the structural features of their interaction with HuR, combining saturation-transfer difference NMR and in silico studies, provides a guide for further research on the development of new effective interfering compounds of the HuR-RNA complex.
    • Optimization of anti-virulence PqsR antagonists regarding aqueous solubility and biological properties resulting in new insights in structure-activity relationships.

      Lu, Cenbin; Kirsch, Benjamin; Maurer, Christine K; de Jong, Johannes C; Braunshausen, Andrea; Steinbach, Anke; Hartmann, Rolf W; Helmholtz-Institut für Pharmazeutische Forschung Saarland Campus, Geb. C2.3 Universität des Saarlandes, D-66123 Saarbrücken, Germany. (2014-05-22)
      Increasing antibiotic resistance urgently requires novel therapeutic options to combat bacterial infections. The anti-virulence therapy selectively intervening with pathogenicity without affecting bacterial viability is such a strategy to overcome resistance. We consider the virulence regulator PqsR as an attractive target in the human pathogen Pseudomonas aeruginosa, and recently discovered the first PqsR antagonists, which, however, suffered from poor aqueous solubility. In this work, the antagonists were structurally modified to become more soluble, and their structure-activity as well as structure-property relationships were studied. A novel promising compound with improved solubility and enhanced anti-virulence activity was discovered (IC50: 3.8 μM, pyocyanin). Our findings emphasize the crucial role of substituents at the 3-position and the carbonyl group at the 4-position for ligand-receptor interactions, and illuminate the way for further optimization of PqsR antagonists as anti-virulence agents.
    • Optimized Inhibitors of MDM2 via an Attempted Protein-Templated Reductive Amination.

      van der Vlag, Ramon; Yagiz Unver, M; Felicetti, Tommaso; Twarda-Clapa, Aleksandra; Kassim, Fatima; Ermis, Cagdas; Neochoritis, Constantinos G; Musielak, Bogdan; Labuzek, Beata; Dömling, Alexander; et al. (Wiley, 2019-12-12)
      Innovative and efficient hit-identification techniques are required to accelerate drug discovery. Protein-templated fragment ligations represent a promising strategy in early drug discovery, enabling the target to assemble and select its binders from a pool of building blocks. Development of new protein-templated reactions to access a larger structural diversity and expansion of the variety of targets to demonstrate the scope of the technique are of prime interest for medicinal chemists. Herein, we present our attempts to use a protein-templated reductive amination to target protein-protein interactions (PPIs), a challenging class of drug targets. We address a flexible pocket, which is difficult to achieve by structure-based drug design. After careful analysis we did not find one of the possible products in the kinetic target-guided synthesis (KTGS) approach, however subsequent synthesis and biochemical evaluation of each library member demonstrated that all the obtained molecules inhibit MDM2. The most potent library member (Ki =0.095 μm) identified is almost as active as Nutlin-3, a potent inhibitor of the p53-MDM2 PPI.
    • Overcoming the unexpected functional inversion of a PqsR antagonist in Pseudomonas aeruginosa: an in vivo potent antivirulence agent targeting pqs quorum sensing.

      Lu, Cenbin; Maurer, Christine K; Kirsch, Benjamin; Steinbach, Anke; Hartmann, Rolf W; Division of Drug design and optimization. Helmholtz-Institute for Pharmaceutical Research Saarland & Pharmaceutical and Medicinal Chemistry, Saarland University. (2014-01-20)
      The virulence regulator PqsR of Pseudomonas aeruginosa is considered as an attractive target for attenuating the bacterial pathogenicity without eliciting resistance. However, despite efforts and desires, no promising PqsR antagonist has been discovered thus far. Now, a surprising functionality change of a highly affine PqsR antagonist in P. aeruginosa is revealed, which is mediated by a bacterial signal molecule synthase and responsible for low cellular potency. Blockade of the susceptible position led to the discovery of the first antivirulence compound that is potent in vivo and targets PqsR, thus providing a proof of concept for this novel antivirulence therapy.
    • Phage Display on the Anti-infective Target 1-Deoxy-d-xylulose-5-phosphate Synthase Leads to an Acceptor-Substrate Competitive Peptidic Inhibitor.

      Marcozzi, Alessio; Masini, Tiziana; Zhu, Di; Pesce, Diego; Illarionov, Boris; Fischer, Markus; Herrmann, Andreas; Hirsch, Anna Katharina Herta; HIPS, Helmholtz-Institut für pharmazeutische Forschung Saarland, Universitätscampus E8.1, 66123 Saarbrücken, Germany. (2018-01-04)
      Enzymes of the 2-C-methyl-d-erythritol-4-phosphate pathway for the biosynthesis of isoprenoid precursors are validated drug targets. By performing phage display on 1-deoxy-d-xylulose-5-phosphate synthase (DXS), which catalyzes the first step of this pathway, we discovered several peptide hits and recognized false-positive hits. The enriched peptide binder P12 emerged as a substrate (d-glyceraldehyde-3-phosphate)-competitive inhibitor of Deinococcus radiodurans DXS. The results indicate possible overlap of the cofactor- and acceptor-substrate-binding pockets and provide inspiration for the design of inhibitors of DXS with a unique and novel mechanism of inhibition.
    • Phosphonate as Stable Zinc-binding Group for Inhibitors of Clostridial Collagenase H (ColH) as Pathoblocker Agents.

      Voos, Katrin; Schönauer, Esther; Alhayek, Alaa; Haupenthal, Jörg; Andreas, Anastasia; Müller, Rolf; Hartmann, Rolf W; Brandstetter, Hans; Hirsch, Anna K H; Ducho, Christian; et al. (Wiley-VCH, 2021-01-27)
      Microbial infections are a significant threat to public health and resistances are on the rise, so new antibiotics with novel modes of action are urgently needed. The extracellular zinc metalloprotease collagenase H (ColH) from Clostridium histolyticum is a virulence factor that catalyzes tissue damage, leading to improved host invasion and colonisation. Besides the major role of ColH in pathogenicity, its extracellular localisation makes it a highly attractive target for the development of new antivirulence agents. Previously, we had found that a highly selective and potent thiol prodrug (with a hydrolytically cleavable thiocarbamate unit) provided efficient ColH inhibition. We now report the synthesis and biological evaluation of a range of zinc-binding group (ZBG) variants of this thiol-derived inhibitor, with the mercapto unit being replaced by other zinc ligands. Among these, an analogue with a phosphonate motif as ZBG showed promising activity against ColH, an improved selectivity profile, and significantly higher stability than the thiol reference compound, thus making it an attractive candidate for future drug development.
    • Potential Dental Biofilm Inhibitors: Dynamic Combinatorial Chemistry Affords Sugar-Based Molecules that Target Bacterial Glucosyltransferase.

      Hartman, Alwin M; Jumde, Varsha R; Elgaher, Walid A M; Te Poele, Evelien M; Dijkhuizen, Lubbert; Hirsch, Anna K H; HIPS, Helmholtz-Institut für Pharmazeutische Forschung Saarland, Universitätscampus E8.1 66123 Saarbrücken, Germany. (Wiley-VCH, 2020-06-16)
      We applied dynamic combinatorial chemistry (DCC) to find novel ligands of the bacterial virulence factor glucosyltransferase (GTF) 180. GTFs are the major producers of extracellular polysaccharides, which are important factors in the initiation and development of cariogenic dental biofilms. Following a structure-based strategy, we designed a series of 36 glucose- and maltose-based acylhydrazones as substrate mimics. Synthesis of the required mono- and disaccharide-based aldehydes set the stage for DCC experiments. Analysis of the dynamic combinatorial libraries (DCLs) by UPLC-MS revealed major amplification of four compounds in the presence of GTF180. Moreover, we found that derivatives of the glucose-acceptor maltose at the C1-hydroxy group act as glucose-donors and are cleaved by GTF180. The synthesized hits display medium to low binding affinity (KD values of 0.4-10.0 mm) according to surface plasmon resonance. In addition, they were investigated for inhibitory activity in GTF-activity assays. The early-stage DCC study reveals that careful design of DCLs opens up easy access to a broad class of novel compounds that can be developed further as potential inhibitors.
    • Preparation of nanosized coacervates of positive and negative starch derivatives intended for pulmonary delivery of proteins

      Barthold, S.; Kletting, S.; Taffner, J.; de Souza Carvalho-Wodarz, C.; Lepeltier, E.; Loretz, B.; Lehr, Claus Michael; Helmholtz-Institut für pharmaceutische Forschung Saarland, Universitätscampus E8.1, 66123 Saarbrücken, Germany. (2016)
    • Protein-Templated Dynamic Combinatorial Chemistry: Brief Overview and Experimental Protocol

      Hartman, Alwin M.; Gierse, Robin M.; Hirsch, Anna K. H.; HIPS, Helmholtz-Institut für Pharmazeutische Forschung Saarland, Universitätscampus E8.1 66123 Saarbrücken, Germany. (Wiley, 2019-05-03)
      Dynamic combinatorial chemistry (DCC) is a powerful tool to identify bioactive compounds. This efficient technique allows the target to select its own binders and circumvents the need for synthesis and biochemical evaluation of all individual derivatives. An ever‐increasing number of publications report the use of DCC on biologically relevant target proteins. This minireview complements previous reviews by focusing on the experimental protocol and giving detailed examples of essential steps and factors that need to be considered, such as protein stability, buffer composition and cosolvents.
    • Protein-Templated Hit Identification through an Ugi Four-Component Reaction.

      Mancini, Federica; Unver, M Yagiz; Elgaher, Walid A M; Jumde, Varsha R; Alhayek, Alaa; Lukat, Peer; Herrmann, Jennifer; Witte, Martin D; Köck, Matthias; Blankenfeldt, Wulf; et al. (Wiley-VCH, 2020-05-19)
    • Proteomic and Membrane Lipid Correlates of Reduced Host Defense Peptide.

      Kohler, Christian; Proctor, Richard A; Bayer, Arnold S; Yeaman, Michael R; Lalk, Michael; Engelmann, Susanne; Mishra, Nagendra N; HIPS, Helmholtz-Institut für Pharmazeutische Forschung Saarland, Universitätscampus E8.1 66123 Saarbrücken, Germany. (MPDI, 2019-09-28)
      We previously described a transposon mutant in Staphylococcus aureus strain SH1000 that exhibited reduced susceptibility to cationic thrombin-induced platelet microbicidal proteins (tPMPs). The transposon insertion site was mapped to the gene snoD, the staphylococcal nuo orthologue. Hence, further studies have been performed to understand how this mutation impacts susceptibility to tPMP, by comparing proteomics profiling and membrane lipid analyses of the parent vs. mutant strains. Surprisingly, the mutant showed differential regulation of only a single protein when cultivated aerobically (FadB), and only a small number of proteins under anaerobic growth conditions (AdhE, DapE, Ddh, Ald1, IlvA1, AgrA, Rot, SA2366, and SA2367). Corresponding to FadB impact on lipid remodeling, membrane fatty acid analyses showed that the snoD mutant contained more short chain anteiso-, but fewer short chain iso-branched chain fatty acids under both aerobic and anaerobic conditions vs. the parental strain. Based upon these proteomic and membrane compositional data, a hypothetical "network" model was developed to explain the impact of the snoD mutation upon tPMP susceptibility.
    • Quinazoline and tetrahydropyridothieno[2,3-d]pyrimidine derivatives as irreversible EGFR tyrosine kinase inhibitors: influence of the position 4 substituent

      Hamed, Mostafa M.; Abou El Ella, Dalal A.; Keeton, Adam B.; Piazza, Gary A.; Engel, Matthias; Hartmann, Rolf W.; Abadi, Ashraf H. (2013-08-20)
    • Rapid Discovery of Aspartyl Protease Inhibitors Using an Anchoring Approach.

      Konstantinidou, Markella; Magari, Francesca; Sutanto, Fandi; Haupenthal, Jörg; Jumde, Varsha R; Ünver, M Yagiz; Heine, Andreas; Camacho, Carlos Jamie; Hirsch, Anna K H; Klebe, Gerhard; et al. (Wiley-VCH, 2020-03-18)
      Pharmacophore searches that include anchors, fragments contributing above average to receptor binding, combined with one-step syntheses are a powerful approach for the fast discovery of novel bioactive molecules. Here, we are presenting a pipeline for the rapid and efficient discovery of aspartyl protease inhibitors. First, we hypothesized that hydrazine could be a multi-valent warhead to interact with the active site Asp carboxylic acids. We incorporated the hydrazine anchor in a multicomponent reaction and created a large virtual library of hydrazine derivatives synthetically accessible in one-step. Next, we performed anchor-based pharmacophore screening of the libraries and resynthesized top-ranked compounds. The inhibitory potency of the molecules was finally assessed by an enzyme activity assay and the binding mode confirmed by several soaked crystal structures supporting the validity of the hypothesis and approach. The herein reported pipeline of tools will be of general value for the rapid generation of receptor binders beyond Asp proteases.
    • A rapid synthesis of low-nanomolar divalent LecA inhibitors in four linear steps from d-galactose pentaacetate.

      Zahorska, Eva; Kuhaudomlarp, Sakonwan; Minervini, Saverio; Yousaf, Sultaan; Lepsik, Martin; Kinsinger, Thorsten; Hirsch, Anna K H; Imberty, Anne; Titz, Alexander; HIPS, Helmholtz-Institut für Pharmazeutische Forschung Saarland, Universitätscampus E8.1 66123 Saarbrücken, Germany. (Royal Sciety of Chemistry, 2020-07-06)
      Chronic infections with Pseudomonas aeruginosa are associated with the formation of bacterial biofilms. The tetrameric P. aeruginosa lectin LecA is a virulence factor and an anti-biofilm drug target. Increasing the overall binding affinity by multivalent presentation of binding epitopes can enhance the weak carbohydrate-ligand interactions. Low-nanomolar divalent LecA ligands/inhibitors with up to 260-fold valency-normalized potency boost and excellent selectivity over human galectin-1 were synthesized from d-galactose pentaacetate and benzaldehyde-based linkers in four linear steps.
    • Rational Adaptation of L3MBTL1 Inhibitors to Create Small-Molecule Cbx7 Antagonists.

      Simhadri, Chakravarthi; Daze, Kevin D; Douglas, Sarah F; Milosevich, Natalia; Monjas, Leticia; Dev, Amarjot; Brown, Tyler M; Hirsch, Anna K H; Wulff, Jeremy E; Hof, Fraser; et al. (Wiley, 2019-08-06)
      Chromobox homolog 7 (Cbx7) is an epigenetic modulator that is an important driver of multiple cancers. It is a methyl reader protein that operates by recognizing and binding to methylated lysine residues on specific partners. Herein we report our efforts to create low-molecular-weight inhibitors of Cbx7 by making rational structural adaptations to inhibitors of a different methyl reader protein, L3MBTL1, inhibitors that had previously been reported to be inactive against Cbx7. We evaluated each new inhibitor for Cbx7 inhibition by fluorescence polarization assay, and also confirmed the binding of selected inhibitors to Cbx7 by saturation-transfer difference NMR spectroscopy. This work identified multiple small-molecule inhibitors with modest (IC50 : 257-500 μm) potency.
    • Recent progress in pharmaceutical therapies for castration-resistant prostate cancer.

      Yin, Lina; Hu, Qingzhong; Hartmann, Rolf W; Pharmaceutical and Medicinal Chemistry, Saarland University & Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus C2-3, Saarbrücken D-66123, Germany. q.hu@mx.uni-saarland.de. (2013)
      Since 2010, six drugs have been approved for the treatment of castration-resistant prostate cancer, i.e., CYP17 inhibitor Abiraterone, androgen receptor antagonist Enzalutamide, cytotoxic agent Cabazitaxel, vaccine Sipuleucel-T, antibody Denosumab against receptor activator of nuclear factor kappa B ligand and radiopharmaceutical Alpharadin. All these drugs demonstrate improvement on overall survival, expect for Denosumab, which increases the bone mineral density of patients under androgen deprivation therapy and prolongs bone-metastasis-free survival. Besides further CYP17 inhibitors (Orteronel, Galeterone, VT-464 and CFG920), androgen receptor antagonists (ARN-509, ODM-201, AZD-3514 and EZN-4176) and vaccine Prostvac, more drug candidates with various mechanisms or new indications of launched drugs are currently under evaluation in different stages of clinical trials, including various kinase inhibitors and platinum complexes. Some novel strategies have also been proposed aimed at further potentiation of antitumor effects or reduction of side effects and complications related to treatments. Under these flourishing circumstances, more investigations should be performed on the optimal combination or the sequence of treatments needed to delay or reverse possible resistance and thus maximize the clinical benefits for the patients.
    • Regulation of Burkholderia cenocepacia biofilm formation by RpoN and the c-di-GMP effector BerB.

      Fazli, Mustafa; Rybtke, Morten; Steiner, Elisabeth; Weidel, Elisabeth; Berthelsen, Jens; Groizeleau, Julie; Bin, Wu; Zhi, Boo Zhao; Yaming, Zhang; Kaever, Volkhard; et al. (2017-04-16)
      Knowledge about the molecular mechanisms that are involved in the regulation of biofilm formation is essential for the development of biofilm-control measures. It is well established that the nucleotide second messenger cyclic diguanosine monophosphate (c-di-GMP) is a positive regulator of biofilm formation in many bacteria, but more knowledge about c-di-GMP effectors is needed. We provide evidence that c-di-GMP, the alternative sigma factor RpoN (σ54), and the enhancer-binding protein BerB play a role in biofilm formation of Burkholderia cenocepacia by regulating the production of a biofilm-stabilizing exopolysaccharide. Our findings suggest that BerB binds c-di-GMP, and activates RpoN-dependent transcription of the berA gene coding for a c-di-GMP-responsive transcriptional regulator. An increased level of the BerA protein in turn induces the production of biofilm-stabilizing exopolysaccharide in response to high c-di-GMP levels. Our findings imply that the production of biofilm exopolysaccharide in B. cenocepacia is regulated through a cascade involving two consecutive transcription events that are both activated by c-di-GMP. This type of regulation may allow tight control of the expenditure of cellular resources.